Acta Optica Sinica, Volume. 42, Issue 1, 0116001(2022)

In-situ Photoelectron Spectroscopy of InGaAs Photocathode in Preparation Process

Shan Li1, Yijun Zhang1、*, Minmin Rong1, Shiman Li1, Feng Shi1, Gangcheng Jiao2, Ziheng Wang1, and Yunsheng Qian1
Author Affiliations
  • 1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • 2Science and Technology on Low-Light-Level Night Vision Laboratory, Xi′an, Shaanxi 710065, China
  • show less
    References(23)

    [1] Sun Q X, Xu X Y, An Y B et al. Numerical study on time response characteristics of InP/InGaAs/InP infrared photocathode[J]. Infrared and Laser Engineering, 42, 3163-3167(2013).

    [2] Li X, Shao X M, Li T et al. Developments of short-wave infrared InGaAs focal plane detectors[J]. Infrared and Laser Engineering, 49, 0103006(2020).

    [3] Liang Y, Fei Q L, Liu Z H et al. Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates[J]. Photonics Research, 7, A1-A6(2019).

    [4] Lu H B, Li G, Li X Y et al. Small lattice-mismatched InGaAsP: material characterization and application in solar cells[J]. Chinese Journal of Luminescence, 41, 351-356(2020).

    [5] Tang Y, Cao C F, Zhao X Y et al. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers[J]. Laser & Optoelectronics Progress, 56, 131402(2019).

    [6] Qiu Y F, Yan W L, Hua S T. Resolution research of low-light-level image intensifier based on electronic trajectory tracking[J]. Acta Photonica Sinica, 49, 1223003(2020).

    [7] Ding Y, Li Q, Li J Y et al. Application of ultrafast lasers in the manufacture of passive optical waveguide devices: a review[J]. Chinese Journal of Lasers, 48, 0802020(2021).

    [8] Shin J H, Park D W, Lee E S et al. Highly reliable THz hermetic detector based on InGaAs/InP Schottky barrier diode[J]. Infrared Physics & Technology, 115, 103736(2021).

    [9] Jin M C. Study of preparation and performance for near-infrared InGaAs photocathode[D]. Nanjing: Nanjing University of Science and Technology, 6-11(2016).

    [10] Jin M C, Chen X L, Hao G H et al. Research on quantum efficiency for reflection-mode with thin emission layer[J]. Applied Optics, 54, 8332-8338(2015).

    [11] Jin M C, Zhang Y J, Chen X L et al. Effect of surface cleaning on spectral response for InGaAs photocathodes[J]. Applied Optics, 54, 10630-10635(2015).

    [12] Ingrey S I J, Lau W M, Sodhi R N S. Characterization of surface oxides and oxide desorption on InGaAs[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7, 1554-1557(1989).

    [13] Li L, Han B K, Hicks R F et al. Atomic structure of InxGa1-xAs/GaAs(0 0 1) (2×4) and (3×2) surfaces[J]. Ultramicroscopy, 73, 229-235(1998).

    [14] Shen L, Tang J L, Jia H M et al. Effect of rapid thermal annealing on luminescence properties of InGaAsSb/AlGaAsSb multiple quantum wells material[J]. Chinese Journal of Lasers, 48, 0711001(2021).

    [15] Biswas J T, Cen J J, Gaowei M J et al. Revisiting heat treatment and surface activation of GaAs photocathodes: in situ studies using scanning tunneling microscopy and photoelectron spectroscopy[J]. Journal of Applied Physics, 128, 045308(2020).

    [16] Fang C W, Zhang Y J, Rong M M et al. Micro-area analysis of surface contaminations of GaAs photocathode in preparation process[J]. Acta Photonica Sinica, 48, 0925001(2019).

    [17] Yang M Z, Jin M C. Photoemission of reflection-mode InGaAs photocathodes after Cs, O activation and recaesiations[J]. Optical Materials, 62, 499-504(2016).

    [18] Yang M Z, Jin M C, Chang B K. Spectral response of InGaAs photocathodes with different emission layers[J]. Applied Optics, 55, 8732-8737(2016).

    [19] Rong M M, Zhang Y J, Li S M et al. InGaAs surface cleaning based on scanning focused XPS technique[J]. Acta Optica Sinica, 41, 0516004(2021).

    [20] [20] CossuG, Ingo GM, MattognoG, et al.( 100) surfaces[J]. Applied SurfaceScience, 1992, 56/57/58: 81- 88.

    [21] Tereshchenko O E, Placidi E, Paget D et al. Well-ordered (1 0 0) InAs surfaces using wet chemical treatments[J]. Surface Science, 570, 237-244(2004).

    [22] Chen Y, Gong L, Du X et al. Comparison of work functions of several materials measured by XPS and UPS[J]. Journal of Instrumental Analysis, 37, 796-803(2018).

    [23] Hussey R J, Sproule G I. McCaffrey J P, et al. Characterization of oxides formed on InP, InGaAs, InAlAs, and InGaAs/InAlAs heterostructures at 300--500 ℃[J]. Oxidation of Metals, 57, 427-447(2002).

    Tools

    Get Citation

    Copy Citation Text

    Shan Li, Yijun Zhang, Minmin Rong, Shiman Li, Feng Shi, Gangcheng Jiao, Ziheng Wang, Yunsheng Qian. In-situ Photoelectron Spectroscopy of InGaAs Photocathode in Preparation Process[J]. Acta Optica Sinica, 2022, 42(1): 0116001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: May. 31, 2021

    Accepted: Jul. 13, 2021

    Published Online: Dec. 22, 2021

    The Author Email: Zhang Yijun (zhangyijun423@126.com)

    DOI:10.3788/AOS202242.0116001

    Topics