Journal of Infrared and Millimeter Waves, Volume. 41, Issue 5, 831(2022)
Retrieval of supercooled water in convective clouds over Nagqu of the Tibetan Plateau using millimeter-wave radar measurements
[1] Stephens G L, Vane D G, Boain R J et al. The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation[J]. Bulletin of the American Meteorological Society, 83, 1771-1790(2002).
[2] WU Ju-Xiu, WEI Ming, WANG Yi-Lin. Retrieval of the Supercooled Water in Stratiform Clouds Based on Millimeter -wave Cloud Radar[J]. Journal of Arid Meteorology, 33, 227-235(2015).
[3] McCoy D T, Tan I, Hartmann D L et al. On the relationships among cloud cover, mixed‐phase partitioning, and planetary albedo in GCMs[J]. Journal of Advances in Modeling Earth Systems, 8, 650-668(2016).
[4] Cober S G, Isaac G A, Strapp J W. Characterizations of aircraft icing environments that include supercooled large drops[J]. Journal of Applied Meteorology, 40, 1984-2002(2001).
[5] JIANG Fang, WEI Chong, LEI Hen-chi et al. Measurement of Column Cloud Liquid Water Content by Airborne Upward-Looking Microwave Radiometer (Ⅱ): Retrieval Method.[J]. Plateau Meteorological, 23, 33-39(2004).
[6] YUAN Min, DUAN Lian, PING Fan et al. Identifying the Supercooled Liquid Water in Aircraft Icing Condition Using CloudSat Satellite Data[J]. Meteor Mon, 43, 206-212(2017).
[7] Hu Y, Rodier S, Xu K et al. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements[J]. Journal of Geophysical Research: Atmospheres, 115(2010).
[8] Shupe M D. A ground-based multisensor cloud phase classifier[J]. Geophysical Research Letters, 34(2007).
[9] PENG Liang, CHEN Hong-Bin, LI Bai. An Application of Fuzzy Logic Method to Cloud Hydrometeor Classifications Using the ARM WACR Data[J]. Remote Sensing Technology and Application, 26, 655-663(2011).
[10] Rambukkange M P, Verlinde J, Eloranta E W et al. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds[J]. IEEE Geoscience and Remote Sensing Letters, 8, 108-112(2010).
[11] Shupe M D, Kollias P, Matrosov S Y et al. Deriving mixed-phase cloud properties from Doppler radar spectra[J]. Journal of Atmospheric and Oceanic Technology, 21, 660-670(2004).
[12] Riihimaki L D, Comstock J M, Luke E et al. A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia[J]. Geophysical Research Letters, 44, 7519-7527(2017).
[13] LI Yu-Lian, SUN Xue-Jin, ZHAO Shi-Jun et al. Analysis of snow microphysical process from Doppler spectra of the Ka-band millimeter-wave cloud radar[J]. Journal of Infrared and millimeter Waves, 38, 245-253(2019).
[14] WANG J, GE J, ZHANG Q et al. Study of Aircraft Icing Warning Algorithm Based on Millimeter Wave Radar[J]. Journal of Meteorological Research, 31, 1034-1044(2017).
[15] Atlas D. The estimation of cloud parameters by radar[J]. Journal of Atmospheric Sciences, 11, 309-317(1954).
[16] Sauvageot H, Omar J. Radar reflectivity of cumulus clouds[J]. Journal of Atmospheric and Oceanic Technology, 4, 264-272(1987).
[17] Fox N I, Illingworth A J. The retrieval of stratocumulus cloud properties by ground-based cloud radar[J]. Journal of Applied Meteorology, 36, 485-492(1997).
[18] Frisch A S, Fairall C W, Snider J B. Measurement of stratus cloud and drizzle parameters in ASTEX with a Ka-band Doppler radar and a microwave radiometer[J]. Journal of Atmospheric Sciences, 52, 2788-2799(1995).
[19] LIU Li-Ping, XIE Lei, CUI Zhe-Hu. Examination and Application of Doppler Spectral Density Data in Drop Size Distribution Retrieval in Weak Precipitation by Cloud Radar[J]. Chinese Journal of Atmospheric Sciences, 38, 223-236(2014).
[20] Liu L, Zheng J, Wu J. A Ka-band solid-state transmitter cloud radar and data merging algorithm for its measurements[J]. Advances in Atmospheric Sciences, 34, 545-558(2017).
[21] Petitdidier M, Sy A, Garrouste A et al. Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers[J]. Radio Science, 32, 1229-1247(1997).
[22] Zheng J, Liu L, Chen H et al. Characteristics of Warm Clouds and Precipitation in South China during the Pre-Flood Season Using Datasets from a Cloud Radar, a Ceilometer, and a Disdrometer[J]. Remote Sensing, 11, 3045(2019).
[23] Zheng J F. Doppler Spectral Data Proccessing Methods of Ka-band Multi-mode Mm-wave Radar and Air Vertical Speed Retrieval in Clouds[D](2016).
[24] Gossard E E. Measurement of cloud droplet size spectra by Doppler radar[J]. Journal of Atmospheric and Oceanic Technology, 11, 712-726(1994).
[25] Kollias P, Albrecht B A, Lhermitte R et al. Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli[J]. Journal of the atmospheric sciences, 58, 1750-1766(2001).
[26] Shupe M D, Koliias P, Poellot M et al. On Deriving Vertical Air Motions from Cloud Radar Doppler Spectra[J]. Journal of Atmospheric and Oceanic Technology, 25, 547-557(2008).
[27] Zheng J, Liu L, Zhu K et al. A method for retrieving vertical air velocities in convective clouds over the Tibetan Plateau from TIPEX-III cloud radar Doppler spectra[J]. Remote Sensing, 9, 964(2017).
[28] Zong R. Studies of Cloud Macro- and Microphysical Properties using China New Generation Millimeter-wavelength Radar[D](2013).
[29] Chen B, Hu Z, Liu L et al. Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III[J]. Journal of Geophysical Research: Atmospheres, 122, 11,092-11,106(2017).
[30] Oue M, Kollias P, Ryzhkov A et al. Toward exploring the synergy between cloud radar polarimetry and Doppler spectral analysis in deep cold precipitating systems in the Arctic[J]. Journal of Geophysical Research: Atmospheres, 123, 2797-2815(2018).
[31] Verlinde J, Rambukkange M P, Clothiaux E E et al. Arctic multilayered, mixed-phase cloud processes revealed in millimeter-wave cloud radar Doppler spectra[J]. Journal of Geophysical Research: Atmospheres, 118, 13,199-13,213(2013).
[32] WANG Liuliu, LIU Liping, YU Jizhou et al. Microphysics and Dynamic Characteristic Analysis of Freezing Rain and Snow Observed by Millimeter Wave Radar[J]. Meteor Mon, 43, 1473-1486(2017).
[33] Gunn R, Kinzer G D. The terminal velocity of fall for water droplets in stagnant air[J]. Journal of Atmospheric Sciences, 6, 243-248(1949).
[34] Westbrook C D, Illingworth A J. Evidence that ice forms primarily in supercooled liquid clouds at temperatures > -27 °C[J]. Geophysical research letters, 38(2011).
[35] Xu X, Lu C, Liu Y et al. Effects of cloud liquid-phase microphysical processes in mixed-phase cumuli over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 125, e2020JD033371(2020).
[36] Zhu Y J. Retrieval of cloud parameters in summer in Nagqu, Qinghai Tibet Plateau based on millimeter wave radar data[D](2019).
[37] QI Yan-Bin, GUO Xue-Liang, JIN De-Zhen. An Observational Study of Macro/Microphysical Structures of Convective Rainbands of a Cold Vortex over Northeast China[J]. Chinese Journal of Atmospheric Sciences, 31, 621-634(2007).
[38] Rosenfeld D, Woodley W L. Deep convective clouds with sustained supercooled liquid water down to -37.5 ℃[J]. Nature, 405, 440-442(2017).
[39] Marchand R, Ackerman T, Westwater E R et al. An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data[J]. Journal of Geophysical Research: Atmospheres, 108(2003).
[40] Löhnert U, Crewell S. Accuracy of cloud liquid water path from ground‐based microwave radiometry 1. Dependency on cloud model statistics[J]. Radio Science, 38(2003).
[41] Wei K H. Preliminary Study of Cloud Parameters Based on Ground-Based Remote Sensing[D], 2015.
[42] Westwater E R, Han Y, Shupe M D et al. Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project[J]. Journal of Geophysical Research: Atmospheres, 106, 32019-32030(2001).
Get Citation
Copy Citation Text
Tao REN, Jia-Feng ZHENG, Li-Ping LIU, Ming-Long ZOU, Shao-Jie CHEN, Jing-Shu HE, Jian-Jie LI. Retrieval of supercooled water in convective clouds over Nagqu of the Tibetan Plateau using millimeter-wave radar measurements[J]. Journal of Infrared and Millimeter Waves, 2022, 41(5): 831
Category: Research Articles
Received: Aug. 30, 2021
Accepted: --
Published Online: Feb. 6, 2023
The Author Email: Jia-Feng ZHENG (zjf1988@cuit.edu.cn)