Photonics Research, Volume. 13, Issue 2, 497(2025)
Silicon photonics convolution accelerator based on coherent chips with sub-1 pJ/MAC power consumption
[2] M. Tan, Q. Le. EfficientNet: rethinking model scaling for convolutional neural networks. International Conference on Machine Learning, 6105-6114(2019).
[3] A. Vaswani, N. Shazeer, N. Parmar. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000-6010(2017).
[4] T. Brown, B. Mann, N. Ryder. Language models are few-shot learners. Proceedings of the 34th International Conference on Neural Information Processing Systems, 33, 1877-1901(2020).
[5] A. Baevski, W.-N. Hsu, A. Conneau. Unsupervised speech recognition. Proceedings of the 35th International Conference on Neural Information Processing Systems, 34, 27826-27839(2021).
[7] C.-J. Wu, R. Raghavendra, U. Gupta. Sustainable AI: environmental implications, challenges and opportunities. Proc. Mach. Learn. Syst., 4, 795-813(2022).
[10] M. Jerry, P.-Y. Chen, J. Zhang. Ferroelectric FET analog synapse for acceleration of deep neural network training. IEEE International Electron Devices Meeting (IEDM), 6.2.1-6.2.4(2017).
[13] K. Roy, I. Chakraborty, M. Ali. In-memory computing in emerging memory technologies for machine learning: an overview. 57th ACM/IEEE Design Automation Conference (DAC), 1-6(2020).
[16] S. Schmitt, J. Klähn, G. Bellec. Neuromorphic hardware in the loop: training a deep spiking network on the brainscales wafer-scale system. International Joint Conference on Neural Networks (IJCNN), 2227-2234(2017).
[18] S. Han. Efficient methods and hardware for deep learning(2017).
[19] Y. Zhu, G. L. Zhang, T. Wang. Statistical training for neuromorphic computing using memristor-based crossbars considering process variations and noise. Design, Automation & Test in Europe Conference & Exhibition (DATE), 1590-1593(2020).
[20] P. Spilger, E. Müller, A. Emmel. hxtorch: PyTorch for brainscales-2: perceptrons on analog neuromorphic hardware. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning, 189-200(2020).
[28] J. Gu, C. Feng, Z. Zhao. Efficient on-chip learning for optical neural networks through power-aware sparse zeroth-order optimization. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 7583-7591(2021).
[29] Y. Zhu, M. Liu, L. Xu. Multi-wavelength parallel training and quantization-aware tuning for wdm-based optical convolutional neural networks considering wavelength-relative deviations. Proceedings of the 28th Asia and South Pacific Design Automation Conference, 384-389(2023).
[40] Y. Zhu, X. Zhang, X. Hua. Optoelectronic neuromorphic accelerator at 523.27 GOPS based on coherent optical devices. Optical Fiber Communication Conference, M2J-4(2023).
[46] C. D. McGillem, G. R. Cooper. Continuous and Discrete Signal and System Analysis(1991).
[47] X. Xiao, L. Wang, M. Luo. High baudrate silicon photonics for the next-generation optical communications. European Conference on Optical Communication (ECOC), 1-4(2022).
[48] X. Hu, D. Wu, H. Zhang. Ultrahigh-speed silicon-based modulators/photodetectors for optical interconnects. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2023).
[54] F. Pedregosa, G. Varoquaux, A. Gramfort. Scikit-learn: machine learning in Python. J. Mach. Learn. Res., 12, 2825-2830(2011).
[55] A. Paszke, S. Gross, F. Massa. PyTorch: an imperative style, high-performance deep learning library. Proceedings of the 33rd International Conference on Neural Information Processing Systems, 32, 8026-8037(2019).
[59] S. Nakano, M. Nagatani, K. Tanaka. A 180-mW linear MZM driver in CMOS for single-carrier 400-Gb/s coherent optical transmitter. European Conference on Optical Communication (ECOC), 1-3(2017).
[61] A. D. Güngördü, G. Dündar, M. B. Yelten. A high performance TIA design in 40 nm CMOS. IEEE International Symposium on Circuits and Systems (ISCAS), 1-5(2020).
Get Citation
Copy Citation Text
Ying Zhu, Lu Xu, Xin Hua, Kailai Liu, Yifan Liu, Ming Luo, Jia Liu, Ziyue Dang, Ye Liu, Min Liu, Hongguang Zhang, Daigao Chen, Lei Wang, Xi Xiao, Shaohua Yu, "Silicon photonics convolution accelerator based on coherent chips with sub-1 pJ/MAC power consumption," Photonics Res. 13, 497 (2025)
Category: Silicon Photonics
Received: Jul. 18, 2024
Accepted: Dec. 2, 2024
Published Online: Feb. 10, 2025
The Author Email: Xi Xiao (xiaoxi@noeic.com)