Optics and Precision Engineering, Volume. 33, Issue 8, 1289(2025)
Remote sensing object detection algorithm based on ultra fusion residual marching geometric perception
[1] ZHAO Z Q, ZHENG P, XU S T et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 30, 3212-3232(2019).
[2] YAGER R R. A framework for multi-source data fusion[J]. Information Sciences, 163, 175-200(2004).
[3] BAR-HILLEL Y, CARNAP R. Semantic information[J]. The British Journal for the Philosophy of Science, 4, 147-157(1953).
[4] HU X D, WANG X Q, MENG F J et al. Gabor-CNN for object detection based on small samples[J]. Defence Technology, 16, 1116-1129(2020).
[5] WANG Y, BASHIR S M A, KHAN M et al. Remote sensing image super-resolution and object detection: Benchmark and state of the art[J]. Expert Systems with Applications, 197, 116793(2022).
[6] CHEN H, LI Y F, SU D. Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection[J]. Pattern Recognition, 86, 376-385(2019).
[7] HE X, TANG C, ZOU X et al. Multispectral object detection
[8] 吴建成, 郭荣佐, 成嘉伟. 注意力特征融合的快速遥感图像目标检测算法[J]. 计算机工程与应用, 60, 207-216(2024).
WU J C, GUO R Z, CHENG J W et al. Fast remote sensing image object detection algorithm based on attention feature fusion[J]. Computer Engineering and Applications, 60, 207-216(2024).
[9] LI Q Y, CHEN Y S, ZENG Y. Transformer with transfer CNN for remote-sensing-image object detection[J]. Remote Sensing, 14, 984(2022).
[10] ZHANG J Q, LEI J, XIE W Y et al. SuperYOLO: super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 5605415(2023).
[11] WAN D H, LU R S, WANG S L et al. YOLO-HR: improved YOLOv5 for object detection in high-resolution optical remote sensing images[J]. Remote Sensing, 15, 614(2023).
[12] LIU P F, WANG Q, ZHANG H et al. A lightweight object detection algorithm for remote sensing images based on attention mechanism and YOLOv5s[J]. Remote Sensing, 15, 2429(2023).
[13] CAO X, ZHANG Y W, LANG S et al. Swin-transformer-based YOLOv5 for small-object detection in remote sensing images[J]. Sensors, 23, 3634(2023).
[14] XIAO J S, YAO Y T, ZHOU J et al. FDLR-Net: a feature decoupling and localization refinement network for object detection in remote sensing images[J]. Expert Systems with Applications, 225, 120068(2023).
[15] CHEN J J, HONG H S, SONG B et al. MDCT: multi-kernel dilated convolution and transformer for one-stage object detection of remote sensing images[J]. Remote Sensing, 15, 371(2023).
[16] QIAN X L, LI C, WANG W et al. Semantic segmentation guided pseudo label mining and instance re-detection for weakly supervised object detection in remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 119, 103301(2023).
[17] ZHANG D W, HAN J W, CHENG G et al. Weakly supervised object localization and detection: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 5866-5885(2022).
[18] CHENG G, YANG J Y, GAO D C et al. High-quality proposals for weakly supervised object detection[J]. IEEE Transactions on Image Processing(2020).
[19] SHEN L Y, LANG B H, SONG Z X. CA-YOLO: model optimization for remote sensing image object detection[J]. IEEE Access, 11, 64769-64781(2023).
[20] LIU B, JIANG W Q. RS-YOLOx: target feature enhancement and bounding box auxiliary regression based object detection approach for remote sensing[J]. Journal of Applied Remote Sensing, 18, -016514(2024).
[21] TIAN Z W, HUANG J, YANG Y et al. KCFS-YOLOv5: a high-precision detection method for object detection in aerial remote sensing images[J]. Applied Sciences, 13, 649(2023).
[22] 付宏建, 白宏阳, 郭宏伟. 融合多注意力机制的光学遥感图像目标检测方法[J]. 光子学报, 51, 312-320(2022).
FU H J, BAI H Y, GUO H W et al. Object detection method of optical remote sensing image with multi-attention mechanism[J]. Acta Photonica Sinica, 51, 312-320(2022).
[23] XU D G, WANG Z Q, XING K J et al. Remote sensing image target detection algorithm based on improved YOLOv6[J]. Computer Engineering and Applications, 60, 119-128(2024).
许德刚, 王再庆, 邢奎杰. 改进YOLOv6的遥感图像目标检测算法[J]. 计算机工程与应用, 60, 119-128(2024).
[24] 苗茹, 岳明, 周珂. 基于改进YOLOv7的遥感图像小目标检测方法[J]. 计算机工程与应用, 60, 246-255(2024).
MIAO R, YUE M, ZHOU K et al. Small target detection method in remote sensing images based on improved YOLOv7[J]. Computer Engineering and Applications, 60, 246-255(2024).
[25] WANG J B, CHENG G, XIE X X et al. Multi-information supervision in optical remote sensing images[J]. National Remote Sensing Bulletin, 27, 2726-2735(2023).
王家宝, 程塨, 谢星星. 多元信息监督的遥感图像有向目标检测[J]. 遥感学报, 27, 2726-2735(2023).
[26] 陈鑫钰, 陈媛媛, 廉永健. 基于PSN-YOLOv7的光学遥感图像目标检测[J]. 现代电子技术, 47, 119-124(2024).
CHEN X Y, CHEN Y Y, LIAN Y J et al. Optical remote sensing image object detection based on PSN-YOLOv7[J]. Modern Electronics Technique, 47, 119-124(2024).
[27] ZHOU Q K, ZHOU H P, SUN K L et al. An Object Detector for Remote Sensing Small Weak Object Detection in Aerial Images[J]. Computer Engineering and Applications, 1.
周沁坤, 周华平, 孙克雷. ARST-YOLOv7:用于航空遥感图像的小目标检测网络[J]. 计算机工程与应用(1).
[28] 梁燕, 饶星晨. 改进YOLOX的遥感图像目标检测算法[J]. 计算机工程与应用, 60, 181-188(2024).
LIANG Y, RAO X C. Remote sensing image object detection algorithm with improved YOLOX[J]. Computer Engineering and Applications, 60, 181-188(2024).
[29] ZHANG Y, YE M, ZHU G Y et al. FFCA-YOLO for small object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 5611215(2024).
[30] CHEN L, ZHANG F, GUO W et al. Multi-stage feature fusion object detection method for remote sensing image[J]. ACTA ELECTRONICA SINICA, 51, 3520-3528(2023).
陈立, 张帆, 郭威. 面向遥感图像的多阶段特征融合目标检测方法[J]. 电子学报, 51, 3520-3528(2023).
[31] 王坤, 文武, 铁菊红. 自适应融合多尺度特征的无锚框遥感图像目标检测算法[J]. 计算机辅助设计与图形学学报, 35, 1405-1416(2023).
WANG K, WEN W, TIE J H et al. Anchor-free object detection method in remote sensing image via adaptive multi-scale feature fusion[J]. Journal of Computer-Aided Design & Computer Graphics, 35, 1405-1416(2023).
[32] JIANG S, HUANG H, YANG J X et al. Innovative research on small object detection and recognition in remote sensing images using YOLOv5[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, W10, 77-83(2024).
[33] LI Y Y, ZHOU Z G, QI G Q et al. Remote sensing micro-object detection under global and local attention mechanism[J]. Remote Sensing, 16, 644(2024).
[34] MA W P, WANG X T, ZHU H et al. Significant feature elimination and sample assessment for remote sensing small objects’ detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 5615115(2024).
[35] XI L H, HOU J W, MA G L et al. A multiscale information fusion network based on PixelShuffle integrated with YOLO for aerial remote sensing object detection[J]. IEEE Geoscience and Remote Sensing Letters, 21, 7501505(2024).
[37] 汪西莉, 梁正印, 刘涛. 基于特征注意力金字塔的遥感图像目标检测方法[J]. 遥感学报, 27, 492-501(2023).
WANG X L, LIANG Z Y, LIU T. Feature attention pyramid-based remote sensing image object detection method[J]. National Remote Sensing Bulletin, 27, 492-501(2023).
[38] YU D W, JI S P. A new spatial-oriented object detection framework for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4407416(2021).
[39] SHARMA M, DHANARAJ M, KARNAM S et al. YOLOrs: object detection in multimodal remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1497-1508(2020).
[40] LI C, CHENG G, WANG G X et al. Instance-aware distillation for efficient object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 5602011(2023).
[41] CHEN S L, ZHAO J Q, ZHOU Y et al. Info-FPN: an Informative feature pyramid network for object detection in remote sensing images[J]. Expert Systems with Applications, 214, 119132(2023).
[42] ZHANG C, LAM K M, WANG Q. CoF-net: a progressive coarse-to-fine framework for object detection in remote-sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 5600617(2023).
[43] YUE C K, YAN J H, ZHANG Y et al. SCFNet: Semantic correction and focus network for remote sensing image object detection[J]. Expert Systems with Applications, 224, 119980(2023).
[44] ZHANG J, LI X, LI J et al. Rethinking mobile block for efficient attention-based models[C], 1389-1400(2023).
[45] ZHANG H, ZHANG S J. Shape-IoU: More Accurate Metric considering Bounding Box Shape and Scale[webpage](2023).
[47] TANG J Y. Research on Remote Sensing Image Target Detection Algorithm based on Deep Learning[D](2023).
唐锦云. 基于深度学习的遥感图像目标检测算法研究[D](2023).
[48] 王晨. 基于神经网络结构搜索的遥感图像目标检测研究[D](2023).
WANG C. Research on Remote Sensing Image Object Detection Based on Neural Architecture Search[D](2023).
[49] CHENG D Q, MA S, KOU Q Q et al. Target detection algorithm for improving feature fusion and global perception based on YOLOv4[J]. CAAI Transactions on Intelligent Systems, 19, 325-334(2024).
程德强, 马尚, 寇旗旗. 基于YOLOv4改进特征融合及全局感知的目标检测算法[J]. 智能系统学报, 19, 325-334(2024).
[50] ZHANG C Y, ZHANG S, HU Y M et al. Dynamic Focusing Multidimensional Attention Remote Sensing Weak Target Detection[J]. Radio Communications Technology(1).
张朝阳, 张上, 胡益民. 动态聚焦多维注意力遥感弱小目标检测[J]. 无线电通信技术(1).
[51] YAO G Z, ZHU S D, ZHANG L et al. HP-YOLOv8: high-precision small object detection algorithm for remote sensing images[J]. Sensors, 24, 4858(2024).
[52] TANG Y, ZHAO Z, HUANG O. Mamba enhanced you only look once network with multiscale spatial attention for remote sensing object detection[J]. Available at SSRN(5059656).
[53] LI C Z, LI Y L, CHEN X H et al. Concerning imbalance and bounding box loss to detect small targets in remote sensing[J]. IEEE Sensors Journal, 24, 27631-27639(2024).
[54] ZHAO W, XUE Y J, SONG Q Z. MLA-YOLO: enhancing remote sensing object detection with multi-attention mechanisms[C], 738-743(2024).
[55] SONG X, GAO E H. YGNet: a lightweight object detection model for remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 22, 7501305(2024).
[56] CHEN Y P, LIU B J, YUAN L Y. PR-deformable DETR: DETR for remote sensing object detection[J]. IEEE Geoscience and Remote Sensing Letters, 21, 2506105(2024).
[57] ZHAO Y Q. LMATDet: Lightweight Multi-scale Aerial TargetDetection with attention and efficient loss[J](2024).
[58] HUI Y, YOU S J, HU X H et al. SEB-YOLO: an improved YOLOv5 model for remote sensing small target detection[J]. Sensors, 24, 2193(2024).
Get Citation
Copy Citation Text
Chenshuai BAI, Xiaofeng BAI, Kaijun WU, Haowen WANG. Remote sensing object detection algorithm based on ultra fusion residual marching geometric perception[J]. Optics and Precision Engineering, 2025, 33(8): 1289
Category:
Received: Aug. 30, 2024
Accepted: --
Published Online: Jul. 1, 2025
The Author Email: Kaijun WU (wkj@mail.lzjtu.cn)