Optics and Precision Engineering, Volume. 33, Issue 8, 1289(2025)

Remote sensing object detection algorithm based on ultra fusion residual marching geometric perception

Chenshuai BAI, Xiaofeng BAI, Kaijun WU*, and Haowen WANG
Author Affiliations
  • School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
  • show less
    Figures & Tables(9)
    YOLO-UG overall network architecture
    Ultra-fusion residual progression module
    GFI intuitive graph
    Multipath feature fusion module
    Sample diagram of datasets
    NWPU-VHR-10 and RSOD data set ablation experiment target detection effect diagram
    • Table 1. Experimental results contrasting

      View table
      View in Article

      Table 1. Experimental results contrasting

      Models\MetricsNWPU-VHR-10 data setRSOD data set
      mPrecisionmRecallmAPmF1 ScoremPrecisionmRecallmAPmF1 Score
      DETR0.569 40.656 60.572 50.607 00.731 20.884 50.863 50.792 5
      SSD0.851 40.757 70.843 90.781 00.947 40.768 30.912 20.800 0
      YOLOv50.912 10.896 20.922 90.901 00.932 30.783 20.906 40.792 5
      HIC-YOLOv546--0.876 0---0.896 0-
      Drone-YOLO46--0.927 0---0.906 0-
      Xu et al46--0.944 0---0.930 0-
      YOLOv70.919 70.811 80.926 90.849 00.945 40.819 20.908 00.855 0
      YOLOv7-tiny--0.921 0---0.945 0-
      Tang et al47--0.971 6---0.962 7-
      Wang et al48--0.916 5---0.901 6-
      Cheng et al49--0.938 7---0.862 9-
      YOLOv80.953 90.914 10.968 30.930 00.850 50.925 60.949 50.877 5
      Zhang et al500.934 00.902 00.940 00.917 00.963 00.927 00.944 00.971 0
      YOLOv9[51----0.934 50.896 50.920 50.915 3
      YOLOv10[51----0.944 70.910 20.933 50.927 3
      SPPF-Mamba[52--0.901 0---0.945 3-
      Li et al[53--0.926 0---0.951 0-
      MLA-YOLO[54--0.946 8---0.939 3-
      YGNet[55--0.889 0---0.962 0-
      PR-Deformable DETR[56--0.883 0---0.951 0-
      LMATDet[57--0.954 3---0.949 8-
      SEB-YOLO[58--0.935 00.939 0-
      YOLO-UG0.961 60.915 80.972 40.934 00.967 50.922 60.969 90.942 5
    • Table 2. Results of ablation experiment on NWPU-VHR-10 data set

      View table
      View in Article

      Table 2. Results of ablation experiment on NWPU-VHR-10 data set

      UFRPMGFIMFFmPrecisionmRecallmAPmF1 ScoreParams/MComplexity/GMac
      ×××0.919 70.811 80.926 90.849 050.6094.35
      ××0.931 60.865 00.950 60.895 050.60105.06
      ×0.941 80.871 90.956 90.901 050.60105.06
      0.961 60.915 80.972 40.934 050.88106.88
    • Table 3. Results of ablation experiment on RSOD data set

      View table
      View in Article

      Table 3. Results of ablation experiment on RSOD data set

      UFRPMGFIMFFmPrecisionmRecallmAPmF1 ScoreParams/MComplexity/GMac
      ×××0.945 40.819 20.908 00.855 050.5694.28
      ××0.901 10.908 80.954 30.902 550.56105.00
      ×0.912 00.878 90.956 30.887 550.56105.00
      0.967 50.922 60.969 90.942 550.84106.81
    Tools

    Get Citation

    Copy Citation Text

    Chenshuai BAI, Xiaofeng BAI, Kaijun WU, Haowen WANG. Remote sensing object detection algorithm based on ultra fusion residual marching geometric perception[J]. Optics and Precision Engineering, 2025, 33(8): 1289

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2024

    Accepted: --

    Published Online: Jul. 1, 2025

    The Author Email: Kaijun WU (wkj@mail.lzjtu.cn)

    DOI:10.37188/OPE.20253308.1289

    Topics