NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040001(2023)

Experimental study of the QCD phase diagram in relativistic heavy-ion collisions

Yu ZHANG, Dingwei ZHANG, and Xiaofeng LUO*
Author Affiliations
  • Institute of Particle Physics and Key Laboratory of Quark & Lepton Physics (MOE), Central China Normal University, Wuhan 430079, China
  • show less
    References(75)

    [1] Masayuki A, Koichi Y. Chiral restoration at finite density and temperature[J]. Nuclear Physics A, 504, 668-684(1989).

    [2] Braun-Munzinger P, Wambach J. The phase diagram of strongly-interacting matter[J]. Reviews of Modern Physics, 81, 1031(2009).

    [3] Fukushima K, Hatsuda T. The phase diagram of dense QCD[J]. Reports on Progress in Physics, 74, 014001(2011).

    [4] Lee T D. Abnormal nuclear states and vacuum excitation[J]. Reviews of Modern Physics, 47, 267-275(1975).

    [5] Adams J, Aggarwal M M, Ahammed Z et al. Experimental and theoretical challenges in the search for the quark-gluon plasma: the STAR Collaboration's critical assessment of the evidence from RHIC collisions[J]. Nuclear Physics A, 757, 102-183(2005).

    [6] Adcox K, Adler S S, Afanasiev S et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration[J]. Nuclear Physics A, 757, 184-283(2005).

    [7] Arsene I, Bearden I G, Beavis D et al. Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment[J]. Nuclear Physics A, 757, 1(2005).

    [8] Back B B, Baker M D, Ballintijn M. The PHOBOS perspective on discoveries at RHIC[J]. Nuclear Physics A, 757, 28-101(2005).

    [9] Luo X F, Wang Q, Xu N et al[M]. Properties of QCD matter at high baryon density(2022).

    [10] Halasz M A, Jackson A D, Shrock R E et al. Phase diagram of QCD[J]. Physical Review D, 58, 096007(1998).

    [11] Endrődi G, Fodor Z, Katz S D et al. The QCD phase diagram at nonzero quark density[J]. Journal of High Energy Physics, 2011, 1(2011).

    [12] de Forcrand P, Philipsen O. The QCD phase diagram for small densities from imaginary chemical potential[J]. Nuclear Physics B, 642, 290-306(2002).

    [13] Ackermann K H, Adams N, Adler C et al. STAR detector overview[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499, 624-632(2003).

    [14] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).

    [15] Liu C, Deng X G, Ma Y G. Density fluctuations in intermediate-energy heavy-ion collisions[J]. Nuclear Science and Techniques, 33, 52(2022).

    [16] Zhu L L, Wang B, Wang M et al. Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions[J]. Nuclear Science and Techniques, 33, 45(2022).

    [17] Stephanov M, Rajagopal K, Shuryak E. Signatures of the tricritical point in QCD[J]. Physical Review Letters, 81, 4816-4819(1998).

    [18] Stephanov M, Rajagopal K, Shuryak E. Event-by-event fluctuations in heavy ion collisions and the QCD critical point[J]. Physical Review D, 60, 114028(1999).

    [19] Jeon S, Koch V. Fluctuations of particle ratios and the abundance of hadronic resonances[J]. Physical Review Letters, 83, 5435-5438(1999).

    [20] Asakawa M, Heinz U, Müller B. Fluctuation probes of quark deconfinement[J]. Physical Review Letters, 85, 2072-2075(2000).

    [21] Hatta Y, Stephanov M A. Proton-number fluctuation as a signal of the QCD critical end point[J]. Physical Review Letters, 91, 102003(2003).

    [22] Koch V, Majumder A, Randrup J. Baryon-strangeness correlations: a diagnostic of strongly interacting matter[J]. Physical Review Letters, 95, 182301(2005).

    [23] Ejiri S, Karsch F, Redlich K. Hadronic fluctuations at the QCD phase transition[J]. Physics Letters B, 633, 275-282(2006).

    [24] Stephanov M A. Non-Gaussian fluctuations near the QCD critical point[J]. Physical Review Letters, 102, 032301(2009).

    [25] Athanasiou C, Rajagopal K, Stephanov M. Using higher moments of fluctuations and their ratios in the search for the QCD critical point[J]. Physical Review D, 82, 074008(2010).

    [26] Stephanov M A. Sign of kurtosis near the QCD critical point[J]. Physical Review Letters, 107, 052301(2011).

    [27] Asakawa M, Kitazawa M. Fluctuations of conserved charges in relativistic heavy ion collisions: an introduction[J]. Progress in Particle and Nuclear Physics, 90, 299-342(2016).

    [28] LUO Xiaofeng, LIU Feng, XU Nu. Quark soup cooking at trillions of degrees: experimental study on the phase structure of nuclear matter and the quantum chromodynamics critical point[J]. Physics, 50, 98-107(2021).

    [29] Friman B, Karsch F, Redlich K et al. Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC[J]. The European Physical Journal C, 71, 1694(2011).

    [30] YIN Shi, TAN Yangyang, FU Weijie. Critical phenomena and functional renormalization group[J]. Nuclear Techniques, 46, 040002(2023).

    [31] Fu W J, Pawlowski J M, Rennecke F et al. Baryon number fluctuations at finite temperature and density[J]. Physical Review D, 94, 116020(2016).

    [32] Fu W J, Luo X F, Pawlowski J M et al. Hyper-order baryon number fluctuations at finite temperature and density[J]. Physical Review D, 104, 094047(2021).

    [33] DING Hengtong, LI Shengtai, LIU Junhong. Progress on QCD properties in strong magnetic fields from lattice QCD[J]. Nuclear Techniques, 46, 040008(2023).

    [34] Bazavov A, Bollweg D, Ding H T et al. Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data[J]. Physical Review D, 101, 074502(2020).

    [35] Aggarwal M M, Ahammed Z, Alakhverdyants A V et al. Higher moments of net proton multiplicity distributions at RHIC[J]. Physical Review Letters, 105, 022302(2010).

    [36] STAR Collaboration. Energy dependence of moments of net-proton multiplicity distributions at RHIC[J]. Physical Review Letters, 112, 032302(2014).

    [37] Adamczyk L, Adkins J K, Agakishiev G et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC[J]. Physical Review Letters, 113, 092301(2014).

    [38] STAR Collaboration. Collision energy dependence of moments of net-kaon multiplicity distributions at RHIC[J]. Physics Letters B, 785, 551(2018).

    [39] Adam J, Adamczyk L, Adams J R et al. Nonmonotonic energy dependence of net-proton number fluctuations[J]. Physical Review Letters, 126, 092301(2021).

    [40] STAR Collaboration. Cumulants and correlation functions of net-proton, proton and antiproton multiplicity distributions in Au+Au collisions at energies available at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 104, 024902(2021).

    [41] Abdallah M S, Adam J, Adamczyk L et al. Measurement of the sixth-order cumulant of net-proton multiplicity distributions in Au+Au collisions at sNN=27, 54.4, and 200 GeV at RHIC[J]. Physical Review Letters, 127, 262301(2021).

    [42] Abdallah M S, Aboona B E, Adam J et al. Measurements of proton high-order cumulants in sNN=3 GeV Au+Au collisions and implications for the QCD critical point[J]. Physical Review Letters, 128, 202303(2022).

    [43] Abdallah M S, Aboona B E, Adam J. Higher-order cumulants and correlation functions of proton multiplicity distributions in sNN =3 GeV Au+Au collisions at the RHIC STAR experiment[J]. Physical Review C, 107, 024908(2023).

    [44] Luo X F, Xu J, Mohanty B et al. Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 40, 105104(2013).

    [45] Chatterjee A, Zhang Y, Liu H et al. Effects of centrality fluctuation and deuteron formation on the proton number cumulant in Au+Au collisions at sNN = 3 GeV from the JAM model[J]. Chinese Physics C, 45, 064003(2021).

    [46] Braun-Munzinger P, Rustamov A, Stachel J. Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions[J]. Nuclear Physics A, 960, 114-130(2017).

    [47] Nonaka T, Kitazawa M, Esumi S. Pileup corrections on higher-order cumulants[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 984, 164632(2020).

    [48] Zhang Y, Huang Y, Nonaka T et al. Pileup correction on higher-order cumulants with unfolding approach[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1026, 166246(2022).

    [49] Luo X F. Unified description of efficiency correction and error estimation for moments of conserved quantities in heavy-ion collisions[J]. Physical Review C, 91, 034907(2015).

    [50] Nonaka T, Kitazawa M, Esumi S. More efficient formulas for efficiency correction of cumulants and effect of using averaged efficiency[J]. Physical Review C, 95, 064912(2017).

    [51] Luo X F, Nonaka T. Efficiency correction for cumulants of multiplicity distributions based on track-by-track efficiency[J]. Physical Review C, 99, 044917(2019).

    [52] STAR Collaboration, Aboona B E, Adam J et al. Beam energy dependence of fifth and sixth-order net-proton number fluctuations in Au+Au collisions at RHIC[J]. Physical Review Letters, 130, 82301(2023).

    [53] Wigner E. On the mass defect of helium[J]. Physical Review, 43, 252-257(1933).

    [54] Csernai L, Kapusta J I. Entropy and cluster production in nuclear collisions[J]. Physics Reports, 131, 223(1986).

    [55] Rajagopal K, Wilczek F. The condensed matter physics of QCD[M]. The Frontier of Particle Physics. World Scientific, 2061-2151(2001).

    [56] Sun K J, Chen L W, Ko C M et al. Light nuclei production as a probe of the QCD phase diagram[J]. Physics Letters B, 781, 499-504(2018).

    [57] SUN Kaijia, CHEN Liewen, Che Ming Ko et al. Light nuclei production and QCD phase transition in heavy-ion collisions[J]. Nuclear Techniques, 46, 040012(2023).

    [58] Sun K J, Chen L W, Ko C M et al. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions[J]. Physics Letters B, 774, 103-107(2017).

    [59] Shuryak E, Torres-Rincon J M. Light-nuclei production and search for the QCD critical point[J]. The European Physical Journal A, 56, 241(2020).

    [60] Zhang D W. Energy dependence of light nuclei (d, t) production at STAR[C](2020).

    [61] Zhang D W. Light nuclei (d, t) production in Au+Au collisions at sNN=7.7-200 GeV[J]. Nuclear Physics A, 1005, 121825(2021).

    [62] Liu H, Zhang D W, He S et al. Light nuclei production in Au+Au collisions at sNN = 5-200 GeV from JAM model[J]. Physics Letters B, 805, 135452(2020).

    [63] Adamczyk L, Adkins J K, Agakishiev G et al. Bulk properties of the medium produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program[J]. Physical Review C, 96, 044904(2017).

    [64] Abelev B I, Aggarwal M M, Ahammed Z. Systematic measurements of identified particle spectra in Pp, D+Au and Au+Au collisions from STAR[J]. Physical Review C, 79, 034909(2009).

    [65] Abelev B I, Aggarwal M M, Ahammed Z. Bulk properties of the system formed in Au+Au collisions atsNN=14.5 GeV at the BNL STAR detector[J]. Physical Review C, 101, 024905(2020).

    [66] Abelev B I, Aggarwal M M, Ahammed Z. Energy dependence of charged pion, proton and anti-proton transverse momentum spectra for Au+Au collisions at sNN = 62.4 and 200 GeV[J]. Physics Letters B, 655, 104(2007).

    [67] Abelev B I, Aggarwal M M, Ahammed Z. Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at sNN =200 GeV[J]. Physical Review Letters, 97, 152301(2006).

    [69] Aggarwal M M, Ahammed Z, Alakhverdyants A V. Strange and multistrange particle production in Au+Au collisions at sNN =62.4 GeV[J]. Physical Review C, 83, 024901(2011).

    [70] Adam J, Adamczyk L, Adams J R et al. Strange hadron production in Au+Au collisions at sNN = 7.7, 11.5, 19.6, 27, and 39 GeV[J]. Physical Review C, 102, 034909(2020).

    [71] Vovchenko V, Dönigus B, Kardan B et al. Feeddown contributions from unstable nuclei in relativistic heavy-ion collisions[J]. Physics Letters B, 809, 135746(2020).

    [72] Vovchenko V, Begun V V, Gorenstein M I. Hadron multiplicities and chemical freeze-out conditions in proton-proton and nucleus-nucleus collisions[J]. Physical Review C, 93, 064906(2016).

    [74] MA Yugang, XU Nu, LIU Feng. Study of the QCD phase structure at HIAF[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 50, 124-132(2020).

    [75] Bzdak A, Esumi S, Koch V et al. Mapping the phases of quantum chromodynamics with beam energy scan[J]. Physics Reports, 853, 1-87(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yu ZHANG, Dingwei ZHANG, Xiaofeng LUO. Experimental study of the QCD phase diagram in relativistic heavy-ion collisions[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 16, 2023

    Accepted: --

    Published Online: Apr. 27, 2023

    The Author Email: LUO Xiaofeng (xfluo@ccnu.edu.cn)

    DOI:10.11889/j.0253-3219.2023.hjs.46.040001

    Topics