Journal of Applied Optics, Volume. 46, Issue 1, 102(2025)

Visual SLAM optimization algorithm based on dynamic object detection

Xubiyue SHANG1, Junwei TIAN1、*, Xingang WANG1, Yuhan BU2, and Wenbo ZHANG1
Author Affiliations
  • 1School of Mechatronic Engineering, Xi'an Technological University, Xi'an 710021, China
  • 2School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou 215028, China
  • show less
    Figures & Tables(14)
    Flow chart of RDFP-SLAM system
    Schematic diagram of epipolar geometry constraint
    Network structure diagram of YOLOv5s
    Schematic diagram of LK optical flow method
    Running results for dataset
    Diagram of trajectory estimation for both two algorithms
    Experimental hardware platform and real trajectories
    Improved algorithm mapping and interface operation effect
    • Table 1. Comparison of absolute trajectory errors between ORB-SLAM2 algorithm and proposed RDFP-SLAM algorithm

      View table
      View in Article

      Table 1. Comparison of absolute trajectory errors between ORB-SLAM2 algorithm and proposed RDFP-SLAM algorithm

      序列ORB-SLAM2RDFP-SLAM提升
      Max/mMean/mMedian/mMin/mRMES/mMax/mMean/mMedian/mMin/mRMES/mRMSE /%
      s_xyz0.04570.01000.00810.00200.01260.05130.01170.01050.00260.0134−6.34
      s_rpy0.07970.02230.02050.00500.02480.07230.02000.01790.00460.02460.81
      s_static0.01660.01020.01070.00400.01100.00670.00400.00420.00100.004360.91
      w_xyz0.57320.24210.22620.04780.27000.05020.01190.01040.00300.013894.89
      w_static0.06660.01320.00980.00100.01740.02330.00710.00650.00120.006054.54
      w_halfsphere0.59010.35520.40360.10030.37240.09170.02030.01590.00270.025893.07
      0111.18215.32115.75160.66355.75139.91614.64594.81070.54865.101411.30
      040.36790.16300.16460.03170.18090.32580.14750.14670.02270.16777.30
      051.20440.53710.53640.06670.58201.02810.43410.40670.02580.463820.31
      0823.12624.90164.42530.34466.035320.43194.87734.04260.16955.60297.16
      0917.58427.27305.46872.31948.699816.09785.94935.11222.06947.94958.62
    • Table 2. Comparison of relative trajectory errors between ORB-SLAM2 algorithm and proposed RDFP-SLAM algorithm

      View table
      View in Article

      Table 2. Comparison of relative trajectory errors between ORB-SLAM2 algorithm and proposed RDFP-SLAM algorithm

      序列ORB-SLAM2RDFP-SLAM提升
      Max/mMean/mMedian/mMin/mRMES/mMax/mMean/mMedian/mMin/mRMES/mRMSE /%
      s_xyz0.05210.01460.01120.00160.01840.06750.01520.01220.00330.0186−1.08
      s_rpy0.07380.01530.01320.00210.01940.10170.01790.01140.00100.0209−7.73
      s_static0.01960.01300.01440.00430.01390.00990.00640.00620.00170.006950.36
      w_xyz0.19750.01540.01190.00050.02260.04700.01400.01170.00110.017124.34
      w_static0.01430.00170.00110.00030.00270.01330.00110.00050.00100.002314.81
      w_halfsphere0.47180.02360.01600.00240.04750.10500.01860.01370.00170.024847.79
      015.32842.97603.10791.65643.16425.21792.91572.97601.64183.05233.54
      041.35491.28021.28021.20561.28261.21811.15401.15151.00981.16059.52
      052.06580.85910.91240.04890.96002.01220.77410.81060.04150.852111.24
      0817.43452.43492.05970.68493.524417.35892.24621.81450.45483.31705.88
      094.58792.29081.87680.84552.52704.11452.03171.60740.67652.29019.37
    • Table 3. Comparison of absolute trajectory errors of different algorithms in TUM dataset m

      View table
      View in Article

      Table 3. Comparison of absolute trajectory errors of different algorithms in TUM dataset m

      序列ORB-SLAM2DS-SLAMDynaSLAMSemantic-SLAM文献[15]RDFP-SLAM
      RMSERMSERMSERMSERMSERMSE
      s_xyz0.01260.01080.01400.01430.01040.0124
      s_static0.01100.00650.00670.00810.00580.0043
      w_xyz0.27000.02470.01500.02250.01500.0138
      w_rpy0.53330.44420.04000.3641---0.0436
      w_static0.01740.00810.00900.00960.00660.0060
      w_halfsphere0.37240.03030.02700.03840.02830.0258
    • Table 4. Comparison of relative trajectory errors of different algorithms in KITTI dataset %

      View table
      View in Article

      Table 4. Comparison of relative trajectory errors of different algorithms in KITTI dataset %

      序列ORB-SLAM2DynaSLAM文献[14]RDFP-SLAM
      RMSERMSERMSERMSE
      013.10793.27213.04702.9760
      041.28021.18451.19041.1515
      050.91240.83110.89250.8106
      082.05971.96741.94631.8145
      091.87681.69431.71211.6074
    • Table 5. Comparison of absolute trajectory errors of different algorithms in real environments m

      View table
      View in Article

      Table 5. Comparison of absolute trajectory errors of different algorithms in real environments m

      序列ORB-SLAM2DS-SLAMDynaSLAM文献[14]RDFP-SLAM
      RMSERMSERMSERMSERMSE
      车间环境1(RGB-D)0.42530.04020.0289---0.0225
      车间环境1(Stereo)0.4012---0.026 70.02740.0168
    • Table 6. Comparison of average tracking time of different algorithms in real environments s

      View table
      View in Article

      Table 6. Comparison of average tracking time of different algorithms in real environments s

      序列ORB-SLAM2DS-SLAMDynaSLAM文献[14]RDFP-SLAM
      RMSERMSERMSERMSERMSE
      车间环境1(RGB-D)0.02200.17860.3465---0.1126
      车间环境2(RGB-D)0.02170.17320.2843---0.1087
      车间环境1(Stereo)0.0534---0.354 90.11920.1267
      车间环境2(Stereo)0.0601---0.365 60.13010.1346
    Tools

    Get Citation

    Copy Citation Text

    Xubiyue SHANG, Junwei TIAN, Xingang WANG, Yuhan BU, Wenbo ZHANG. Visual SLAM optimization algorithm based on dynamic object detection[J]. Journal of Applied Optics, 2025, 46(1): 102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 26, 2023

    Accepted: --

    Published Online: Apr. 1, 2025

    The Author Email: Junwei TIAN (田军委)

    DOI:10.5768/JAO202546.0102002

    Topics