Chinese Journal of Lasers, Volume. 50, Issue 3, 0307103(2023)

Application of Adaptive Optics in Two‑photon Microscopic Imaging

Chen Zhang1, Yufeng Gao2, Shiwei Ye2, Hui Li2, and Wei Zheng2、*
Author Affiliations
  • 1School of Information and Communication, Shenzhen Institute of Information Technology, Shenzhen 518172, Guangdong, China
  • 2Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
  • show less
    References(49)

    [1] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 65, 229(1953).

    [2] Booth M J. Adaptive optical microscopy: the ongoing quest for a perfect image[J]. Light: Science & Applications, 3, e165(2014).

    [3] Ji N. Adaptive optical fluorescence microscopy[J]. Nature Methods, 14, 374-380(2017).

    [4] Hampson K M, Turcotte R, Miller D T et al. Adaptive optics for high-resolution imaging[J]. Nature Reviews, 1, 68(2021).

    [5] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [6] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).

    [7] Svoboda K, Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience[J]. Neuron, 50, 823-839(2006).

    [8] Hoover E E, Squier J A. Advances in multiphoton microscopy technology[J]. Nature Photonics, 7, 93-101(2013).

    [9] Albert O, Sherman L, Mourou G et al. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy[J]. Optics Letters, 25, 52-54(2000).

    [10] Liu L X, Zhang M L, Wu Z Q et al. Application of adaptive optics in fluorescence microscope[J]. Laser&Optoelectronics Progress, 57, 120001(2020).

    [11] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).

    [12] Simmonds R D, Wilson T, Booth M J. Effects of aberrations and specimen structure in conventional, confocal and two-photon fluorescence microscopy[J]. Journal of Microscopy, 245, 63-71(2012).

    [13] Yang P, Liu Y, Yang W et al. An adaptive laser beam shaping technique based on a genetic algorithm[J]. Chinese Optics Letters, 5, 497-500(2007).

    [14] El-Agmy R, Bulte H, Greenaway A H et al. Adaptive beam profile control using a simulated annealing algorithm[J]. Optics Express, 13, 6085-6091(2005).

    [15] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 22, 907-909(1997).

    [16] Zhou Z, Huang J F, Li X et al. Adaptive optical microscopy via virtual-imaging-assisted wavefront sensing for high-resolution tissue imaging[J]. PhotoniX, 3, 13(2022).

    [17] Booth M J. Wave front sensor-less adaptive optics: a model-based approach using sphere packings[J]. Optics Express, 14, 1339-1352(2006).

    [18] Débarre D, Botcherby E J, Watanabe T et al. Image-based adaptive optics for two-photon microscopy[J]. Optics Letters, 34, 2495-2497(2009).

    [19] Booth M J. Wavefront sensorless adaptive optics for large aberrations[J]. Optics Letters, 32, 5-7(2007).

    [20] Seifert L, Tiziani H J, Osten W. Wavefront reconstruction with the adaptive Shack-Hartmann sensor[J]. Optics Communications, 245, 255-269(2005).

    [21] Bon P, Linarès-Loyez J, Feyeux M et al. Self-interference 3D super-resolution microscopy for deep tissue investigations[J]. Nature Methods, 15, 449-454(2018).

    [22] Li C, Xia M L, Mu Q Q et al. High-precision open-loop adaptive optics system based on LC-SLM[J]. Optics Express, 17, 10774-10781(2009).

    [23] Ji N, Milkie D E, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues[J]. Nature Methods, 7, 141-147(2010).

    [24] Ji N, Sato T R, Betzig E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 22-27(2012).

    [25] Milkie D E, Betzig E, Ji N. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination[J]. Optics Letters, 36, 4206-4208(2011).

    [26] Wang C, Ji N. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy[J]. Optics Letters, 37, 2001-2003(2012).

    [27] Wang C, Ji N. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics[J]. Optics Express, 21, 27142-27154(2013).

    [28] Tang J Y, Germain R N, Cui M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 8434-8439(2012).

    [29] Kong L J, Cui M. In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique[J]. Optics Express, 22, 23786-23794(2014).

    [30] Wang C, Liu R, Milkie D E et al. Multiplexed aberration measurement for deep tissue imaging in vivo[J]. Nature Methods, 11, 1037-1040(2014).

    [31] Rodríguez C, Chen A, Rivera J A et al. An adaptive optics module for deep tissue multiphoton imaging in vivo[J]. Nature Methods, 18, 1259-1264(2021).

    [32] Gao Y F, Liu L N, Yin Y X et al. Adaptive optics via pupil ring segmentation improves spherical aberration correction for two-photon imaging of optically cleared tissues[J]. Optics Express, 28, 34935-34947(2020).

    [33] Park J H, Kong L J, Zhou Y F et al. Large-field-of-view imaging by multi-pupil adaptive optics[J]. Nature Methods, 14, 581-583(2017).

    [34] Sinefeld D, Paudel H P, Ouzounov D G et al. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence[J]. Optics Express, 23, 31472-31483(2015).

    [35] Streich L, Boffi J, Wang L et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy[J]. Nature Methods, 18, 1253-1258(2021).

    [36] Yao J, Gao Y F, Yin Y X et al. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics[J]. Optics Letters, 47, 989-992(2022).

    [37] Cha J W, Ballesta J, So P T C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy[J]. Journal of Biomedical Optics, 15, 046022(2010).

    [38] Tao X D, Norton A, Kissel M et al. Adaptive optical two-photon microscopy using autofluorescent guide stars[J]. Optics Letters, 38, 5075-5078(2013).

    [39] Wang K, Milkie D E, Saxena A et al. Rapid adaptive optical recovery of optimal resolution over large volumes[J]. Nature Methods, 11, 625-628(2014).

    [40] Wang K, Sun W Z, Richie C T et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue[J]. Nature Communications, 6, 7276(2015).

    [41] Liu R, Li Z Y, Marvin J S et al. Direct wavefront sensing enables functional imaging of infragranular axons and spines[J]. Nature Methods, 16, 615-618(2019).

    [42] Qin Z Y, He S C, Yang C et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo[J]. Light: Science & Applications, 9, 79(2020).

    [43] Chen C P, Qin Z Y, He S C et al. High-resolution two-photon transcranial imaging of brain using direct wavefront sensing[J]. Photonics Research, 9, 1144-1156(2021).

    [44] Papadopoulos I N, Jouhanneau J S, Poulet J F A et al. Scattering compensation by focus scanning holographic aberration probing (F-SHARP)[J]. Nature Photonics, 11, 116-123(2017).

    [45] Papadopoulos I N, Jouhanneau J S, Takahashi N et al. Dynamic conjugate F-SHARP microscopy[J]. Light: Science & Applications, 9, 110(2020).

    [46] Berlage C, Tantirigama M L S, Babot M et al. Deep tissue scattering compensation with three-photon F-SHARP[J]. Optica, 8, 1613-1619(2021).

    [47] Qin Z Y, She Z T, Chen C P et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping[J]. Nature Biotechnology, 1-9(2022).

    [48] Gao Y F, Xia X Y, Li H et al. Wavefront modulation improves two-photon microscopy resolution of clearing tissues[J]. Chinese Journal of Lasers, 44, 0107002(2017).

    [49] Yu Z P, Li H H, Zhong T T et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields[J]. Innovation, 3, 100292(2022).

    Tools

    Get Citation

    Copy Citation Text

    Chen Zhang, Yufeng Gao, Shiwei Ye, Hui Li, Wei Zheng. Application of Adaptive Optics in Two‑photon Microscopic Imaging[J]. Chinese Journal of Lasers, 2023, 50(3): 0307103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Sep. 16, 2022

    Accepted: Nov. 2, 2022

    Published Online: Feb. 6, 2023

    The Author Email:

    DOI:10.3788/CJL221250

    Topics