Journal of Synthetic Crystals, Volume. 53, Issue 5, 773(2024)

Molten KOH Etching Behaviors of Heavily Doped P-Type SiC

CHENG Jiahui1, YANG Lei1, WANG Jinnan2, GONG Chunsheng2、*, ZHANG Zesheng2, and JIAN Jikang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(37)

    [1] [1] EDDY C R Jr, GASKILL D K. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400.

    [2] [2] YANG X L, YANG K, CHEN X F, et al. Growth and device application of high quality N-type SiC single crystals[J]. Journal of Synthetic Crystals, 2015, 44(6): 1427-1431 (in Chinese).

    [3] [3] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103.

    [4] [4] LI Q. Silicon carbide substrate material progress over the abroad[J]. Sichuan Chemical Industry, 2017, 20(5): 15-17 (in Chinese).

    [5] [5] SHE X, HUANG A Q, LUCA , et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205.

    [6] [6] WANG J F, YAN F F, LI Q, et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature[J]. Physical Review Letters, 2020, 124(22): 223601.

    [7] [7] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101.

    [8] [8] SUMAKERIS J J, LEONARD R T, DEYNEKA E, et al. Dislocation characterization in 4H-SiC crystals[J]. Materials Science Forum, 2016, 858: 393-396.

    [9] [9] YANG G, LIU X S, LI J J, et al. Dislocation in 4H silicon carbide single crystal[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1673-1690.

    [10] [10] ZHANG J X, PENG Y, CHEN X F, et al. Research progress of dislocations in SiC single crystal[J]. Journal of Synthetic Crystals, 2022, 51(11): 1973-1982 (in Chinese).

    [11] [11] LI J J, LUO H, YANG G, et al. Nitrogen decoration of basal-plane dislocations in 4H-SiC[J]. Physical Review Applied, 2022, 17(5): 054011.

    [12] [12] LU S O, CHEN H Y, HANG W, et al. Numerical analysis of the dislocation density in n-type 4H-SiC[J]. CrystEngComm, 2023, 25(26): 3718-3725.

    [13] [13] NA M, KANG I H, MOON J H, et al. Role of the oxidizing agent in the etching of 4H-SiC substrates with molten KOH[J]. Journal of the Korean Physical Society, 2016, 69(11): 1677-1682.

    [14] [14] SUN S, SONG H P, YANG J W, et al. The etching behaviour of dislocations in N-doped 4H-SiC substrate[J]. Journal of Crystal Growth, 2023, 618: 127318.

    [15] [15] SUN S, SONG H P, YANG J W, et al. Optimization of KOH etching for single crystal SiC by dry air[J]. Journal of Synthetic Crystals, 2023, 52(5): 753-758 (in Chinese).

    [16] [16] ZHANG Y, CHEN N F, ZHANG F, et al. Optimization of characterization methods for 4H-SiC threading dislocation and its density distribution[J]. Semiconductor Technology, 2023, 48(11): 977-984 (in Chinese).

    [17] [17] GAO Y, ZHANG Z H, BONDOKOV R, et al. The effect of doping concentration and conductivity type on preferential etching of 4H-SiC by molten KOH[J]. MRS Online Proceedings Library, 2004, 815(1): 6-10.

    [18] [18] KALLINGER B, POLSTER S, BERWIAN P, et al. Threading dislocations in n- and p-type 4H-SiC material analyzed by etching and synchrotron X-ray topography[J]. Journal of Crystal Growth, 2011, 314(1): 21-29.

    [19] [19] ANZALONE R, SEVERINO A, PILUSO N, et al. Dislocations analysis on implanted (p-type and n-type) 4H-SiC epi-layer by KOH molten etching[J]. Materials Science Forum, 2020, 1004: 408-413.

    [20] [20] GAO J X, JU T, ZHANG L G, et al. Characterization of dislocation etch pits by molten KOH etching in n- and p-type 4H-SiC epilayers doped by ion implantation[J]. Materials Science in Semiconductor Processing, 2023, 165: 107647.

    [21] [21] MAHAJAN S, ROKADE M V, ALI S T, et al. Investigation of micropipe and defects in molten KOH etching of 6H n-silicon carbide (SiC) single crystal[J]. Materials Letters, 2013, 101: 72-75.

    [22] [22] DONG L, ZHENG L, LIU X F, et al. Defect revelation and evaluation of 4H silicon carbide by optimized molten KOH etching method[J]. Materials Science Forum, 2013, 740/741/742: 243-246.

    [23] [23] WANG H J, YU J Y, HU G J, et al. Micropipes in SiC single crystal observed by molten KOH etching[J]. Materials, 2021, 14(19): 5890.

    [24] [24] ZHANG X Q, LUO H, LI J J, et al. Research progress on wet etching of semiconductor SiC[J]. Journal of Synthetic Crystals, 2022, 51(2): 333-343 (in Chinese).

    [25] [25] CUI Y X, HU X B, XIE X J, et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method[J]. CrystEngComm, 2018, 20(7): 978-982.

    [26] [26] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.

    [27] [27] YANG Y, CHEN Z M. Defect characterization of SiC by wet etching process[J]. Journal of Synthetic Crystals, 2008, 37(3): 634-638 (in Chinese).

    [28] [28] MIAO R X. Effects of etching parameters on dislocation etching morphology of SiC single-crystal materials[J]. Science and Technology Innovation Herald, 2013, 10(25): 87-89 (in Chinese).

    [29] [29] NIU Y X, LU W L, WANG F F, et al. Research on the molten KOH etched 4H-SiC epilayers[J]. Smart Grid, 2015, 3(12): 1164-1167 (in Chinese).

    [30] [30] SAKWE S A, JANG Y S, WELLMANN P J. Defect etching of non-polar and semi-polar faces in SiC[J]. Materials Science Forum, 2007, 556/557: 243-246.

    [31] [31] YU J Y, YANG X L, PENG Y, et al. Revelation of the dislocations in the C-face of 4H-SiC substrates using a microwave plasma etching treatment[J]. CrystEngComm, 2021, 23(2): 353-359.

    [32] [32] HATAYAMA T, SHIMIZU T, KOUKETSU H, et al. Thermal etching of 4H-SiC(0001) Si faces in the mixed gas of chlorine and oxygen[J]. Japanese Journal of Applied Physics, 2009, 48(6R): 066516.

    [33] [33] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese Journal of Applied Physics, 1999, 38(8): 4661.

    [34] [34] SAKWE S A, MLLER R, WELLMANN P J. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth, 2006, 289(2): 520-526.

    [35] [35] SHOR J S, OSGOOD R M, KURTZ A D. Photoelectrochemical conductivity selective etch stops for SiC[J]. Applied Physics Letters, 1992, 60(8): 1001-1003.

    [36] [36] SHOR J S, ZHANG X G, OSGOOD R M. Laser-assisted photoelectrochemical etching of n-type beta-SiC[J]. Journal of the Electrochemical Society, 1992, 139(4): 1213-1216.

    [37] [37] SYVJRVI M, YAKIMOVA R, JANZN E. Anisotropic etching of SiC[J]. Journal of the Electrochemical Society, 2000, 147(9): 3519.

    Tools

    Get Citation

    Copy Citation Text

    CHENG Jiahui, YANG Lei, WANG Jinnan, GONG Chunsheng, ZHANG Zesheng, JIAN Jikang. Molten KOH Etching Behaviors of Heavily Doped P-Type SiC[J]. Journal of Synthetic Crystals, 2024, 53(5): 773

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 12, 2023

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: GONG Chunsheng (645385331@163.com)

    DOI:

    CSTR:32186.14.

    Topics