Chinese Journal of Lasers, Volume. 50, Issue 24, 2402205(2023)

Laser Cladding High‑Entropy Alloy Coating Reinforced by Carbon Nanotubes and Its Corrosion Resistance

Bing Han1,2、*, Xi Chen3, Meng Jiang3, Wenlong Chen4, Dongdong Zhang5, Lichao Cao2, Junshuang Zhang1, Xianbin Teng1, and Yanbin Chen3
Author Affiliations
  • 1School of Marine Engineering, Guangzhou Maritime University, Guangzhou 510725, Guangdong, China
  • 2Institute of Intelligent Manufacturing, Guangdong Academy of Science, Guangzhou 510070, Guangdong, China
  • 3State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
  • 4Center for Industrial Analysis and Testing, Guangdong Academy of Science, Guangzhou 510650, Guangdong, China
  • 5School of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, Sichuan, China
  • show less
    References(30)

    [1] Yeh J W, Chen S K, Lin S J et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).

    [2] Yeh J W, Chang S Y, Hong Y D et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Materials Chemistry and Physics, 103, 41-46(2007).

    [3] Zou P J, Dong G, Wang L et al. Microstructure and corrosion resistance properties of CrNiAlCoMoB0.5 high entropy alloy coating prepared by laser clading[J]. Chinese Journal of Laser, 42, s103003(2015).

    [4] Zhang S, Wu C L, Yi J Z et al. Study on microstructure and performance of a FexCoCrAlCu/Q235 laser alloying coatings[J]. Chinese Journal of Lasers, 41, 0803006(2014).

    [5] Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy[J]. Acta Materialia, 163, 40-54(2019).

    [6] Fan Q K, Chen C, Fan C L et al. Ultrasonic suppression of element segregation in gas tungsten arc cladding AlCoCuFeNi high-entropy alloy coatings[J]. Surface and Coatings Technology, 420, 127364(2021).

    [7] Qi Y L, Cao T H, Zong H X et al. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping[J]. Journal of Materials Science & Technology, 75, 154-163(2021).

    [8] Feng H, Cui S Y, Chen H T et al. A molecular dynamics investigation into deformation mechanism of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates[J]. Surface and Coatings Technology, 401, 126325(2020).

    [9] Gludovatz B, Hohenwarter A, Catoor D et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 345, 1153-1158(2014).

    [10] Weng Z Q, Dong G, Zhang Q L et al. Effects of annealing on microstructure and properties of FeCrNiCoMn high-entropy alloy coating prepared by laser cladding[J]. Chinese Journal of Lasers, 41, 0303002(2014).

    [11] Wang Y, Li M Y, Sun L L et al. Microstructure and corrosion property of FeCrNiCo(Cu/Mn) high entropy alloys[J]. The Chinese Journal of Nonferrous Metals, 30, 94-102(2020).

    [12] Li P, Pang S J, Zhao J et al. Corrosion behavior of CoCrFeNiTi0.5 high entropy alloy in molten Na2SO4-25%NaCl[J]. The Chinese Journal of Nonferrous Metals, 25, 367-374(2015).

    [13] Peng Y W, Gong J M, Christiansen T L et al. Surface modification of CoCrFeNi high entropy alloy by low-temperature gaseous carburization[J]. Materials Letters, 283, 128896(2021).

    [14] Bahrami A, Mohammadnejad A, Sajadi M. Microstructure and mechanical properties of spark plasma sintered AlCoFeMnNi high entropy alloy (HEA)-carbon nanotube (CNT) nanocomposite[J]. Journal of Alloys and Compounds, 862, 158577(2021).

    [15] Chen L B, Wei R, Tang K et al. Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility[J]. Materials Science and Engineering: A, 716, 150-156(2018).

    [16] Luo T, Zhang H L, Liu R R et al. Mechanical and damping properties of the multi-layer graphenes enhanced CrMnFeCoNi high-entropy alloy composites produced by powder metallurgy[J]. Materials Letters, 293, 129682(2021).

    [17] Medina L Z, Tavares da Costa M V, Paschalidou E M et al. Enhancing corrosion resistance, hardness, and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon[J]. Materials & Design, 205, 109711(2021).

    [18] Xiao J K, Tan H, Chen J et al. Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys[J]. Journal of Alloys and Compounds, 847, 156533(2020).

    [19] Singh S, Shaikh S M, Kumar M K P et al. Microstructural homogenization and substantial improvement in corrosion resistance of mechanically alloyed FeCoCrNiCu high entropy alloys by incorporation of carbon nanotubes[J]. Materialia, 14, 100917(2020).

    [20] Li H B, Guo M, Wang L et al. Laser cladding preparation and wear resistance of H13/Ni/WC hybrid powder gradient cladding layer[J]. Laser & Optoelectronics Progress, 58, 0314006(2021).

    [21] Zhang Y P, Wang Y D, Xu G et al. Effect of graphene on microstructure and properties of laser cladding Ti-C-Nb-reinforced Ni-based coating[J]. Laser & Optoelectronics Progress, 59, 0114002(2022).

    [22] Liu H, Gao Q, Man J X et al. Microstructure and properties of CoCrFeMnNiTix high-entropy alloy coating by laser cladding[J]. Chinese Journal of Lasers, 49, 0802002(2022).

    [23] Juan Y F, Li J, Jiang Y Q et al. Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings[J]. Applied Surface Science, 465, 700-714(2019).

    [24] Shu F Y, Liu S, Zhao H Y et al. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 731, 662-666(2018).

    [25] Guo Y X, Shang X J, Liu Q B. Microstructure and properties of in situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings[J]. Surface and Coatings Technology, 344, 353-358(2018).

    [26] Zhang H F, Yan H L, Yu H et al. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. Journal of Materials Science & Technology, 48, 146-155(2020).

    [27] Chen D, Guan Y J, Jin G et al. In-situ synthesis of a FeCoCrNiCu/FeCoCrNiAl composite high entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 461, 129447(2023).

    [28] Li Y Y, Liu H, Liu X H et al. Microstructure, thermostability and tribological behavior of composite CoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding[J]. Optik, 283, 170899(2023).

    [29] Zhang J C, Jiang J B, Huang X et al. Effect of carbon nanotubes content on microstructure and properties of laser cladded Ni-based composite coating[J]. Chinese Journal of Lasers, 49, 0202301(2022).

    [30] Shou Y R, Pan Z, Cao Z X et al. Efficient broad spectrum extreme ultraviolet based on carbon nanotube foam[J]. Acta Optica Sinica, 42, 1134021(2022).

    Tools

    Get Citation

    Copy Citation Text

    Bing Han, Xi Chen, Meng Jiang, Wenlong Chen, Dongdong Zhang, Lichao Cao, Junshuang Zhang, Xianbin Teng, Yanbin Chen. Laser Cladding High‑Entropy Alloy Coating Reinforced by Carbon Nanotubes and Its Corrosion Resistance[J]. Chinese Journal of Lasers, 2023, 50(24): 2402205

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Surface Machining

    Received: Apr. 17, 2023

    Accepted: May. 30, 2023

    Published Online: Nov. 1, 2023

    The Author Email: Han Bing (dabingzhenniu@163.com)

    DOI:10.3788/CJL230737

    Topics