Chinese Journal of Lasers, Volume. 47, Issue 8, 802002(2020)
Effect of Crystal Orientation on Synthesis of Graphene Layers by Laser Decomposition of 4H-SiC
In this paper, a KrF excimer laser is used to decompose 4H-SiC substrates to prepare graphene layers. The research is focused on the influence of the crystal orientation of 4H-SiC on the quality of the graphene produced. The effects of laser energy density, pulse number, and crystal orientation on graphene quality are analyzed. With a laser energy density of 1.06 J/cm 2 and a pulse number of 8000 shots, the graphene obtained on the polar Si-plane (0001) and on the non-polar a-plane (11?20) of the 4H-SiC sample are both of the best quality. We find that a buffer layer that provides a template for the growth of graphene is formed between Si-plane (0001) and 4H-SiC substrate. The graphene obtained from the buffer layer is consequently more ordered and has fewer defects. In contrast, there is no buffer layer between the photo-generated graphene on a-plane (11?20) and 4H-SiC substrate, which results in the generated graphene being disordered and more sensitive to the laser parameters.
Get Citation
Copy Citation Text
Sun Zhengyang, Ji Lingfei, Lin Zhenyuan, Zhang Tong, Xu Yuanbo, Zhang Litian. Effect of Crystal Orientation on Synthesis of Graphene Layers by Laser Decomposition of 4H-SiC[J]. Chinese Journal of Lasers, 2020, 47(8): 802002
Category: laser manufacturing
Received: Jan. 6, 2020
Accepted: --
Published Online: Aug. 24, 2020
The Author Email: Lingfei Ji (ncltji@bjut.edu.cn)