Opto-Electronic Engineering, Volume. 52, Issue 5, 250025(2025)

Electrostatically driven membrane deformable mirror edge effects and their influence on the evaluation of correction capability

Haolei Jia1,2,3,4, Naiting Gu5、*, and Libo Zhong1,2
Author Affiliations
  • 1National Laboratory on Adaptive Optics, Chengdu, Sichuan 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    References(30)

    [1] Jiang W H. Overview of adaptive optics development[J]. Opto-Electron Eng, 45, 170489(2018).

    [2] Booth M J, Neil M A A, Juškaitis R et al. Adaptive aberration correction in a confocal microscope[J]. Proc Natl Acad Sci USA, 99, 5788-5792(2002).

    [3] Guo Y M, Chen K L, Zhou J H et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope[J]. Opto-Electron Adv, 6, 230039(2023).

    [4] Luo S, Wang J Q, Zhang B. Influence of fatigue characteristics of piezoelectric ceramics actuators on correction ability of deformable mirror[J]. Chin J Lasers, 45, 0905002(2018).

    [5] Hermann B, Fernández E J, Unterhuber A et al. Adaptive-optics ultrahigh-resolution optical coherence tomography[J]. Opt Lett, 29, 2142-2144(2004).

    [6] Zhao H X, Li K, Yang F et al. Customized anterior segment photoacoustic imaging for ophthalmic burn evaluation in vivo[J]. Opto-Electron Adv, 4, 200017(2021).

    [7] Ren J, Lin H, Zheng X R et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film[J]. Opto-Electron Sci, 1, 210013(2022).

    [8] Jin K, Liu Y Q, Han J et al. Study of high-efficiency metasurfaces based on optical thin films[J]. Acta Opt Sin, 44, 1026032(2024).

    [9] Kim D, Choi H, Brendel T et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 4, 210040(2021).

    [10] Xiong G Y, Tang A, Lan B et al. Vortex field manipulation based on deformation mirror with continuous surface[J]. Opto-Electron Eng, 49, 220066(2022).

    [11] Zhao S M, Gu N T, Huang L H et al. Low spatio-temporal frequency wavefront aberration correction technology of solar telescope[J]. Infrared Laser Eng, 52, 20220887(2023).

    [12] Zhu L J, Sun P C, Bartsch D U et al. Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation[J]. Appl Opt, 38, 168-176(1999).

    [13] Zeng Z G, Ling N. Research of analysis method for stress of discrete deformable thin mirror[J]. Opt Precis Eng, 5, 21-29(1997).

    [14] Yan J L, Zhao Y, Yu F et al. Theory and simulation of MEMS deformable mirror[J]. Proc SPIE, 6032, 60320J(2006).

    [15] Chen L Z, Guan X W, Zhang Z. Development and application of MEMS deformable mirror[J]. Laser Optoelectron Prog, 47, 022201(2010).

    [16] Ma J Q, Liu Y, Chen J J et al. Design and performance testing of 200-element silicon unimorph deformable mirror[J]. Opt Precis Eng, 22, 2047-2053(2014).

    [17] Xiong L, Hu J, Yang Z et al. Research progress of microcapacitors: from preparation technology to development trend[J]. Opt Precis Eng, 29, 2818-2831(2021).

    [18] Zhang Y, Jin G. Research on electrostatic deformation of membrane mirror[J]. Opt Precis Eng, 17, 267-273(2009).

    [19] Yan Z H, Zhou Z Y, Li Y et al. Study on the charge driven displacement behavior of the actuator of the point ahead angle mechanism of a space gravitational wave telescope[J]. Opto-Electron Eng, 50, 230223(2023).

    [20] Chien W Z, Wang Z Z, Xu Y G et al. The symmetrical deformation of circular membrane under the action of uniformly distributed loads in its central portion[J]. Appl Math Mech, 2, 599-612(1981).

    [21] Li S C, Dong Z Z. The natural boundary element method for the bending of the elastic thin circular plate under the discontinuous load[J]. J Guangdong Univ Technol, 20, 96-100(2003).

    [22] Eriksson E. Low-order aberration correction with a membrane deformable mirror for adaptive optics[D](2004).

    [23] Fernández E J, Artal P. Membrane deformable mirror for adaptive optics: performance limits in visual optics[J]. Opt Express, 11, 1056-1069(2003).

    [24] An Y, Jin G, Qi Y C et al. The test design of shape controlled with single electrode Electrostatic about the membrane mirror[J]. Opt Precis Eng, 17, 1964-1970(2009).

    [25] Lei J H. Influence of plate spacing on capacitive edge effect[J]. Comput Telecommun, 57-58,64(2013).

    [26] Yariv E. Edge corrections for parallel-plate capacitors[J]. Eur J Appl Math, 32, 226-241(2021).

    [27] Liu Y B, Yuan W Z, Qiao D Y et al. Design and modes of a novel two-dimensional microscanner with electrostatic actuation[J]. Acta Opt Sin, 33, 0623001(2013).

    [28] Wang S G, Guan X P, Wang D W et al. Solution of the electric field integral equation using higher-order method of moments[J]. J Electron Inf Technol, 29, 2265-2268(2007).

    [29] Liu Y N, Pan X M, Sheng X Q. A new method for accuracy analysis in method of moments[J]. Trans Beijing Inst Technol, 36, 723-726(2016).

    Tools

    Get Citation

    Copy Citation Text

    Haolei Jia, Naiting Gu, Libo Zhong. Electrostatically driven membrane deformable mirror edge effects and their influence on the evaluation of correction capability[J]. Opto-Electronic Engineering, 2025, 52(5): 250025

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Feb. 8, 2025

    Accepted: Mar. 25, 2025

    Published Online: Jul. 18, 2025

    The Author Email: Naiting Gu (顾乃庭)

    DOI:10.12086/oee.2025.250025

    Topics