Acta Optica Sinica, Volume. 42, Issue 11, 1134006(2022)
Effect of Optics Contamination on X-ray Free-Electron Laser Beam Quality
[1] Kim K J, Huang Z R, Lindberg R[M]. Synchrotron radiation and free-electron lasers(2017).
[2] Pellegrini C, Marinelli A, Reiche S. The physics of X-ray free-electron lasers[J]. Reviews of Modern Physics, 88, 015006(2016).
[3] Genin F Y, Michlitsch K, Furr J et al. Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface[J]. Proceedings of SPIE, 2966, 126-138(1997).
[4] Salleo A, Genin F Y, Yoshiyama J M et al. Laser-induced damage of fused silica at 355 nm initiated at scratches[J]. Proceedings of SPIE, 3244, 341-347(1998).
[5] Palmier S, Garcia S, Rullier J L. Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser[J]. Optical Engineering, 47, 084203(2008).
[6] Palmier S, Rullier J L, Capoulade J et al. Effect of laser irradiation on silica substrate contaminated by aluminum particles[J]. Applied Optics, 47, 1164-1170(2008).
[7] Shen N, Demos S G, Negres R A et al. Energetic laser cleaning of metallic particles and surface damage on silica optics: investigation of the underlying mechanisms[J]. Proceedings of SPIE, 9632, 155-165(2015).
[8] Bude J, Carr C W, Miller P E et al. Particle damage sources for fused silica optics and their mitigation on high energy laser systems[J]. Optics Express, 25, 11414-11435(2017).
[9] Brown A, Bernot D, Ogloza A et al. Physical origin of early failure for contaminated optics[J]. Scientific Reports, 9, 635(2019).
[10] Kafka K R P, Demos S G. Interaction of short laser pulses with model contamination microparticles on a high reflector[J]. Optics Letters, 44, 1844-1847(2019).
[11] Geloni G, Saldin E, Samoylova L et al. Coherence properties of the European XFEL[J]. New Journal of Physics, 12, 035021(2010).
[12] Boutet S, Yabashi M. X-ray free electron lasers and their applications[M]. ∥Boutet S, Fromme P, Hunter M S. X-ray free electron lasers: a revolution in structural biology. Cham: Springer, 1-21(2018).
[13] Mahajan V N. Strehl ratio for primary aberrations in terms of their aberration variance[J]. Journal of the Optical Society of America, 73, 860-861(1983).
[14] Cocco D, Spiga D. Wavefront preserving optics for diffraction-limited storage rings and free-electron lasers[J]. Proceedings of SPIE, 11111, 37-46(2019).
[15] Cocco D. Recent developments in UV optics for ultra-short, ultra-intense coherent light sources[J]. Photonics, 2, 40-49(2015).
[16] Bean R J, Aquila A, Samoylova L et al. Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL[J]. Journal of Optics, 18, 074011(2016).
[17] Yadav P K, Kumar M, Gupta R K et al. Refurbishment of an Au-coated toroidal mirror by capacitively coupled RF plasma discharge[J]. Journal of Synchrotron Radiation, 26, 1152-1160(2019).
[18] Yadav P K. Studies on synchrotron radiation induced contaminations and development of optics refurbishing techniqures[D]. Indore: Raja Ramanna Centre for Advanced Technology(2021).
[19] Chauvet C, Polack F, Silly M G et al. Carbon contamination of soft X-ray beamlines: dramatic anti-reflection coating effects observed in the 1 keV photon energy region[J]. Journal of Synchrotron Radiation, 18, 761-764(2011).
[20] Anazawa T, Nishiyama Y, Oizumi H et al. Characterization of EUV-deposited carboneous contamination. [C]∥Proceedings of the International Symposium on Extreme Ultraviolet Lithography, September 28-October 1, 2008, Lake Tahoe, California, United States. [S.l.]: SEMATECH, 1611(2008).
[21] U. S. Department of Energy Office of Science. X-ray optics for BES light source facilities Washington, D. C.: Scientifc User Facilities Division,[R]. Office of Basic Energy Sciences(2013).
[22] Fernandez H M, Rogler D, Sauthier G et al. Characterization of carbon-contaminated B4C-coated optics after chemically selective cleaning with low-pressure RF plasma[J]. Scientific Reports, 8, 1293(2018).
[23] Stefana P M, Coccoa D, Gulliksonb E M et al. Preliminary results for in situ cleaning of B4C-coated FEL mirrors using oxygen plasma[R]. Menlo Park: SLAC(2020).
[24] Soufli R, Fernandez-Perea M. Hau-Riege S P, et al. Lifetime and damage threshold properties of reflective X-ray coatings for the LCLS free-electron laser[J]. Proceedings of SPIE, 8077, 11-17(2011).
[25] Kozhevnikov I V, Buzmakov A V, Siewert F et al. Growth of nano-dots on the grazing-incidence mirror surface under FEL irradiation[J]. Journal of Synchrotron Radiation, 23, 78-90(2016).
[26] Wen M W, Kozhevnikov I V, Siewert F et al. Effect of the surface roughness on X-ray absorption by mirrors operating at extremely small grazing angles[J]. Optics Express, 26, 21003-21018(2018).
[27] Reddy H K N, Yoon C H, Aquila A et al. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source[J]. Scientific Data, 4, 170079(2017).
[28] McKinney W R, Takacs P Z. Plasma discharge cleaning of replica gratings contaminated by synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research, 195, 371-374(1982).
[29] Koide T, Shidara T, Tanaka K et al. In situ dc oxygen-discharge cleaning system for optical elements[J]. Review of Scientific Instruments, 60, 2034-2037(1989).
[30] Koide T, Sato S, Shidara T et al. Investigation of carbon contamination of synchrotron radiation mirrors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 246, 215-218(1986).
[31] Koide T, Yanagihara M, Aiura Y et al. Glow-discharge cleaning in oxygen of carbon-contaminated optical elements[J]. Physica Scripta, 35, 313-317(1987).
[32] Koide T, Yanagihara M, Aiura Y et al. Resuscitation of carbon-contaminated mirrors and gratings by oxygen-discharge cleaning. 1: efficiency recovery in the 4--40-eV range[J]. Applied Optics, 26, 3884-3894(1987).
[33] Rosenberg R A, Crossley D B. Oxygen rf-discharge cleaning: plasma characterization and implementation on a grasshopper beam line[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 266, 386-391(1988).
[34] Rosenberg R A, Smith J A, Wallace D J. Plasma cleaning of beamline optical components: contamination and gas composition effects[J]. Review of Scientific Instruments, 63, 1486-1489(1992).
[35] Pellegrin E, Šics I, Reyes-Herrera J et al. Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning[J]. Journal of Synchrotron Radiation, 21, 300-314(2014).
[36] Kumar M, Modi M H, Singhal H et al. Restoration of absolute diffraction efficiency and blaze angle of carbon contaminated gratings by ultraviolet cleaning[J]. Applied Optics, 52, 1725-1730(2013).
[37] Johnson E D, Garrett R F. In situ reactive cleaning of X-ray optics by glow discharge[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 266, 381-385(1988).
[38] Ohashi H, Senba Y, Yumoto H et al. Development of contamination-free X-ray optics for next-generation light sources[C]. AIP Conference Proceedings, 1741, 040023(2016).
[39] Ohashi H, Senba Y, Kotani Y et al. Effective protocol for realizing contamination-free X-ray reflective optics[J]. Review of Scientific Instruments, 90, 021704(2019).
[40] Yadav P K, Gupta R K, Modi M H. Use of zero order synchrotron radiation for in situ cleaning of beamline optics: results of trial experiments[C]. AIP Conference Proceedings, 2115, 030290(2019).
[41] Yadav P K, Gupta R K, Choubey A K et al. Analysis of Au film surface after carbon layer removal with ultra violet radiation, RF plasma and IR laser[C]. AIP Conference Proceedings, 2265, 030253(2020).
[42] Heya A, Harada T, Niibe M et al. Removal of surface contamination by atomic hydrogen annealing[J]. Journal of Photopolymer Science and Technology, 33, 419-426(2020).
[43] Niibe M, Harada T, Heya A et al. Removal of carbon contamination on oxidation-prone metal-coated mirrors using atomic hydrogen[C]. AIP Conference Proceedings, 2054, 060010(2019).
[44] Samoylova L, Buzmakov A, Chubar O et al. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations[J]. Journal of Applied Crystallography, 49, 1347-1355(2016).
[45] Chubar O, Berman L, Chu Y S et al. Development of partially-coherent wavefront propagation simulation methods for 3rd and 4th generation synchrotron radiation sources[J]. Proceedings of SPIE, 8141, 44-53(2011).
[46] Dommach M. UHV guidelines for X-ray beam transport systems[R]. Schenefeld: European XFEL(2014).
[47] Sinn H, Dommach M, Dickert B et al. The SASE1 X-ray beam transport system[J]. Journal of Synchrotron Radiation, 26, 692-699(2019).
Get Citation
Copy Citation Text
Yajun Tong, Fang Liu, Jiadong Fan, Limin Jin, Xiaohao Dong, Xiaojiang Yu, Huaidong Jiang, Zhi Liu. Effect of Optics Contamination on X-ray Free-Electron Laser Beam Quality[J]. Acta Optica Sinica, 2022, 42(11): 1134006
Category: X-Ray Optics
Received: Apr. 2, 2022
Accepted: May. 6, 2022
Published Online: Jun. 3, 2022
The Author Email: Tong Yajun (tongyj@shanghaitech.edu.cn)