Laser & Optoelectronics Progress, Volume. 58, Issue 11, 1100001(2021)

Research Progresses, Opportunities, and Challenges of Perovskite Light-Emitting Diodes

Ruyan Kang1,2, Lili Yan1,2, Ziqi Zhang1,2, Zhiyuan Zuo1,2、*, and Zhiqiang Li1,2、**
Author Affiliations
  • 1Center for Optics Research and Engineering, Shandong University, Qingdao , Shandong 266237, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao , Shandong 266237, China
  • show less
    References(100)

    [1] Grätzel M. The light and shade of perovskite solar cells[J]. Nature Materials, 13, 838-842(2014).

    [2] Tan Z K, Moghaddam R S, Lai M L et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 9, 687-692(2014).

    [3] Song J, Li J, Li X et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 27, 7162-7167(2015).

    [4] Yang X H, Wang Q, Xiao Z W et al. Highly efficient green-emitting devices based on mixed-cation perovskites[J]. Acta Optica Sinica, 39, 1016002(2019).

    [5] Huang S H, Liu Z Z, Du J et al. Review of perovskite micro-and nano-lasers[J]. Laser & Optoelectronics Progress, 57, 071602(2020).

    [6] Shi Y Q, Li R X, Yu J H et al. Synthesis and stability of CsPbBr3 perovskite nanorods with high optical gain[J]. Chinese Journal of Lasers, 47, 0701024(2020).

    [7] Liu Y Z, Li G H, Cui Y X et al. Research progress in perovskite photodetectors[J]. Laser & Optoelectronics Progress, 56, 010001(2019).

    [8] Zheng X P, Yuan S, Liu J K et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes[J]. ACS Energy Letters, 5, 793-798(2020).

    [9] Shen X Y, Zhang Y, Kershaw S V et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices[J]. Nano Letters, 19, 1552-1559(2019).

    [10] Lin K B, Xing J, Quan L N et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J]. Nature, 562, 245-248(2018).

    [11] Shen Y, Cheng L P, Li Y Q et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement[J]. Advanced Materials, 31(2019).

    [12] Chiba T, Hayashi Y, Ebe H et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nature Photonics, 12, 681-687(2018).

    [13] Fang Z B, Chen W J, Shi Y L et al. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%[J]. Advanced Functional Materials, 30, 1909754(2020).

    [14] Cao Y, Wang N N, Tian H et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 562, 249-253(2018).

    [15] Zhao B D, Bai S, Kim V et al. High-efficiency perovskite: polymer bulk heterostructure light-emitting diodes[J]. Nature Photonics, 12, 783-789(2018).

    [16] Xu W D, Hu Q, Bai S et al. Rational molecular passivation for high-performance perovskite light-emitting diodes[J]. Nature Photonics, 13, 418-424(2019).

    [17] Zhao X F, Tan Z K. Large-area near-infrared perovskite light-emitting diodes[J]. Nature Photonics, 14, 215-218(2020).

    [18] Zhang M, Liu W, Zheng C J et al. Tricomponent exciplex emitter realizing over 20% external quantum efficiency in organic light-emitting diode with multiple reverse intersystem crossing channels[J]. Advanced Science, 6, 1801938(2019).

    [19] Huang Z, Bin Z, Su R et al. Molecular design of non-doped OLEDs based on a twisted heptagonal acceptor: a delicate balance between rigidity and rotatability[J]. Angewandte Chemie, 59, 9992-9996(2020).

    [20] Protesescu L, Yakunin S, Bodnarchuk M I et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 15, 3692-3696(2015).

    [21] Mosconi E, Amat A, Nazeeruddin M K et al. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications[J]. The Journal of Physical Chemistry C, 117, 13902-13913(2013).

    [22] Kim Y H, Wolf C, Kim Y T et al. Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size[J]. ACS Nano, 11, 6586-6593(2017).

    [23] Schmidt L C, Pertegás A, González-Carrero S et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 136, 850-853(2014).

    [24] Yu D J, Cao F, Gao Y J et al. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving rec. 2020 displays[J]. Advanced Functional Materials, 28, 1800248(2018).

    [25] Zhang X L, Wang W G, Xu B et al. Less-lead control toward highly efficient formamidinium-based perovskite light-emitting diodes[J]. ACS Applied Materials & Interfaces, 10, 24242-24248(2018).

    [26] Kim Y H, Kim J S, Lee T W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes[J]. Advanced Materials, 31, 1804595(2019).

    [27] Chen B, Yu Z S, Liu K et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%[J]. Joule, 3, 177-190(2019).

    [28] Stranks S D, Eperon G E, Grancini G et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 342, 341-344(2013).

    [29] Kim Y H, Cho H, Heo J H et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes[J]. Advanced Materials, 27, 1248-1254(2015).

    [30] Zou Y, Yuan Z, Bai S et al. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability[J]. Materials Today Nano, 5, 100028(2019).

    [31] Wei Z, Xing J. The rise of perovskite light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 10, 3035-3042(2019).

    [32] Zou W, Li R, Zhang S et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes[J]. Nature Communications, 9, 608(2018).

    [33] Xiao Z G, Kerner R A, Zhao L F et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 11, 108-115(2017).

    [34] Wang J P, Wang N N, Jin Y Z et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes[J]. Advanced Materials, 27, 2311-2316(2015).

    [35] Sutherland B R, Sargent E H. Perovskite photonic sources[J]. Nature Photonics, 10, 295-302(2016).

    [36] Cho C, Zhao B D, Tainter G D et al. The role of photon recycling in perovskite light-emitting diodes[J]. Nature Communications, 11, 611(2020).

    [37] Yan F, Xing J, Xing G C et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes[J]. Nano Letters, 18, 3157-3164(2018).

    [38] Xing J, Yan F, Zhao Y W et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles[J]. ACS Nano, 10, 6623-6630(2016).

    [39] Yang D, Li P L, Zou Y T et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications[J]. Chemistry of Materials, 31, 1575-1583(2019).

    [40] Jiang Y, Qin C, Cui M et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 10, 1868(2019).

    [41] Zhang J B, Zhang L W, Cai P et al. Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes[J]. Nano Energy, 62, 434-441(2019).

    [42] Quan L N, Ma D X, Zhao Y B et al. Edge stabilization in reduced-dimensional perovskites[J]. Nature Communications, 11, 170(2020).

    [43] Pan G C, Bai X, Xu W et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices[J]. ACS Applied Materials & Interfaces, 12, 14195-14202(2020).

    [44] Ban M, Zou Y, Rivett J P H et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring[J]. Nature Communications, 9, 3892(2018).

    [45] Wang N N, Cheng L, Ge R et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nature Photonics, 10, 699-704(2016).

    [46] Zhang Q P, Zhang D Q, Gu L L et al. Three-dimensional perovskite nanophotonic wire array-based light-emitting diodes with significantly improved efficiency and stability[J]. ACS Nano, 14, 1577-1585(2020).

    [47] Miao Y, Cheng L, Zou W et al. Microcavity top-emission perovskite light-emitting diodes[J]. Light, Science & Applications, 9, 89(2020).

    [48] Pan J, Shang Y Q, Yin J et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. Journal of the American Chemical Society, 140, 562-565(2018).

    [49] Wei Y, Li X F, Chen Y Q et al. In situ light-initiated ligands cross-linking enables efficient all-solution-processed perovskite light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 11, 1154-1161(2020).

    [50] Wang Z B, Luo Z, Zhao C Y et al. Efficient and stable pure green all-inorganic perovskite CsPbBr3 light-emitting diodes with a solution-processed NiOx interlayer[J]. The Journal of Physical Chemistry C, 121, 28132-28138(2017).

    [51] Ren Z W, Xiao X T, Ma R M et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability[J]. Advanced Functional Materials, 29, 1905339(2019).

    [52] Zhang L, Yang X, Jiang Q et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes[J]. Nature Communications, 8, 15640(2017).

    [53] Baek S, Kang S, Son C et al. Highly stable all-inorganic perovskite quantum dots using a ZnX2-trioctylphosphine-oxide: application for high-performance full-color light-emitting diode[J]. Advanced Optical Materials, 8, 1901897(2020).

    [54] Xu H, Wang X C, Li Y et al. Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display[J]. The Journal of Physical Chemistry Letters, 11, 3689-3698(2020).

    [55] Xiang C, Wu L, Lu Z et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes[J]. Nature Communications, 11, 1646(2020).

    [56] Wang H R, Zhang X Y, Wu Q Q et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices[J]. Nature Communications, 10, 665(2019).

    [57] Li N, Song L, Jia Y H et al. Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations[J]. Advanced Materials, 32, 1907786(2020).

    [58] Wang L T, Shi Z F, Ma Z Z et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h[J]. Nano Letters, 20, 3568-3576(2020).

    [59] Zhao L F, Roh K, Kacmoli S et al. Thermal management enables bright and stable perovskite light-emitting diodes[J]. Advanced Materials, 32, 2000752(2020).

    [60] Chen H, Lin J, Kang J et al. Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes[J]. Science Advances, 6(2020).

    [61] Zou C, Liu Y, Ginger D S et al. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes[J]. ACS Nano, 14, 6076-6086(2020).

    [62] Yu J C, Kim D W, da Kim B et al. Improving the stability and performance of perovskite light-emitting diodes by thermal annealing treatment[J]. Advanced Materials, 28, 6906-6913(2016).

    [63] Tsai H, Nie W Y, Blancon J C et al. Stable light-emitting diodes using phase-pure Ruddlesden-Popper layered perovskites[J]. Advanced Materials, 30, 1704217(2018).

    [64] Wu C, Zou Y T, Wu T et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment[J]. Advanced Functional Materials, 27, 1700338(2017).

    [65] Li J Q, Shan X, Bade S G R et al. Single-layer halide perovskite light-emitting diodes with sub-band gap turn-on voltage and high brightness[J]. The Journal of Physical Chemistry Letters, 7, 4059-4066(2016).

    [66] Liang H, Yuan F, Johnston A et al. High color purity lead-free perovskite light-emitting diodes via Sn stabilization[J]. Advanced Science, 7, 1903213(2020).

    [67] Yang X, Zhang X, Deng J et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation[J]. Nature Communications, 9, 570(2018).

    [68] Jia Y H, Neutzner S, Zhou Y et al. Role of excess FAI in formation of high-efficiency FAPbI3-based light-emitting diodes[J]. Advanced Functional Materials, 30, 1906875(2020).

    [69] Wang H Y, Kosasih F U, Yu H L et al. Perovskite-molecule composite thin films for efficient and stable light-emitting diodes[J]. Nature Communications, 11, 891(2020).

    [70] Sim K, Jun T, Bang J et al. Performance boosting strategy for perovskite light-emitting diodes[J]. Applied Physics Reviews, 6, 031402(2019).

    [71] Liu Y, Cui J Y, Du K et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures[J]. Nature Photonics, 13, 760-764(2019).

    [72] Yuan S, Wang Z K, Xiao L X et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes[J]. Advanced Materials, 31, 1904319(2019).

    [73] Du P P, Li J H, Wang L et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes[J]. ACS Applied Materials & Interfaces, 11, 47083-47090(2019).

    [74] Jin Y, Wang Z K, Yuan S et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes[J]. Advanced Functional Materials, 30, 1908339(2020).

    [75] Ma D X, Todorović P, Meshkat S et al. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes[J]. Journal of the American Chemical Society, 142, 5126-5134(2020).

    [76] Yu J C, Kim D B, Baek G et al. High-performance planar perovskite optoelectronic devices: a morphological and interfacial control by polar solvent treatment[J]. Advanced Materials, 27, 3492-3500(2015).

    [77] Zhang X, Lin H, Huang H et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer[J]. Nano Letters, 16, 1415-1420(2016).

    [78] Qin C J, Matsushima T, Sandanayaka A S D et al. Centrifugal-coated quasi-two-dimensional perovskite CsPb2Br5 films for efficient and stable light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 8, 5415-5421(2017).

    [79] Prakasam V, Tordera D, Bolink H J et al. Degradation mechanisms in organic lead halide perovskite light-emitting diodes[J]. Advanced Optical Materials, 7, 1900902(2019).

    [80] Zhang J F, Wang H R, Cao F et al. Efficient all-solution-processed perovskite light-emitting diodes enabled by small-molecule doped electron injection layers[J]. Advanced Optical Materials, 8, 1900567(2020).

    [81] Yang G, Liu X Y, Sun Y Z et al. Improved current efficiency of quasi-2D multi-cation perovskite light-emitting diodes: the effect of Cs and K[J]. Nanoscale, 12, 1571-1579(2020).

    [82] Tsai H, Liu C, Kinigstein E et al. Critical role of organic spacers for bright 2D layered perovskites light-emitting diodes[J]. Advanced Science, 7, 1903202(2020).

    [83] Lei L, Seyitliyev D, Stuard S et al. Efficient energy funneling in quasi-2D perovskites: from light emission to lasing[J]. Advanced Materials, 32, 1906571(2020).

    [84] Han B N, Yuan S C, Fang T et al. Novel Lewis base cyclam self-passivation of perovskites without an anti-solvent process for efficient light-emitting diodes[J]. ACS Applied Materials & Interfaces, 12, 14224-14232(2020).

    [85] Zhang S T, Yi C, Wang N N et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells[J]. Advanced Materials, 29, 1606600(2017).

    [86] Zhang X, Han D B, Wang C H et al. Highly efficient light emitting diodes based on in situ fabricated FAPbI3 nanocrystals: solvent effects of on-chip crystallization[J]. Advanced Optical Materials, 7, 1900774(2019).

    [87] Lu M, Guo J, Sun S Q et al. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification[J]. Nano Letters, 20, 2829-2836(2020).

    [88] Wang Z B, Wang F Z, Zhao B et al. Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy[J]. The Journal of Physical Chemistry Letters, 11, 1120-1127(2020).

    [89] Ma Z Z, Shi Z F, Qin C C et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons[J]. ACS Nano, 14, 4475-4486(2020).

    [90] Ma Z Z, Shi Z F, Yang D W et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots[J]. ACS Energy Letters, 5, 385-394(2020).

    [91] Gao L, Quan L N, de Arquer F P G et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite[J]. Nature Photonics, 14, 227-233(2020).

    [92] Yan J L, Croes G, Fakharuddin A et al. Exploiting two-step processed mixed 2D/3D perovskites for bright green light emitting diodes[J]. Advanced Optical Materials, 7, 1900465(2019).

    [93] Meng F Y, Liu X Y, Chen Y X et al. Co-interlayer engineering toward efficient green quasi-two-dimensional perovskite light-emitting diodes[J]. Advanced Functional Materials, 30, 1910167(2020).

    [94] Fakharuddin A, Qiu W M, Croes G et al. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection[J]. Advanced Functional Materials, 29, 1904101(2019).

    [95] Jiang D H, Liao Y C, Cho C J et al. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes[J]. ACS Applied Materials & Interfaces, 12, 14408-14415(2020).

    [96] Shen Y, Li M N, Li Y Q et al. Rational interface engineering for efficient flexible perovskite light-emitting diodes[J]. ACS Nano, 14, 6107-6116(2020).

    [97] Bao C, Xu W, Yang J et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes[J]. Nature Electronics, 3, 156-164(2020).

    [98] Li G, Rivarola F W, Davis N J et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method[J]. Advanced Materials, 28, 3528-3534(2016).

    [99] Zhuang S W, Ma X, Hu D Q et al. Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure[J]. Ceramics International, 44, 4685-4688(2018).

    [100] Liu B Q, Wang L, Gu H S et al. Highly efficient green light-emitting diodes from all-inorganic perovskite nanocrystals enabled by a new electron transport layer[J]. Advanced Optical Materials, 6, 1800220(2018).

    Tools

    Get Citation

    Copy Citation Text

    Ruyan Kang, Lili Yan, Ziqi Zhang, Zhiyuan Zuo, Zhiqiang Li. Research Progresses, Opportunities, and Challenges of Perovskite Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1100001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 13, 2020

    Accepted: Aug. 25, 2020

    Published Online: Jun. 7, 2021

    The Author Email: Zhiyuan Zuo (zuozhiyuan@sdu.edu.cn), Zhiqiang Li (lzq@sdu.edu.cn)

    DOI:10.3788/LOP202158.1100001

    Topics