Chinese Journal of Lasers, Volume. 51, Issue 16, 1602203(2024)
Simulation and Experimental Study of Effects of In-Situ Remelting on Morphology Modification and Microstructure Evolution of Laser Cladding Layer on Inclined Substrates
[1] Yang S R, Bai H Q, Bao J et al. Single pass forming process of laser cladding iron base alloy powder[J]. Applied Laser, 42, 33-40(2022).
[2] Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 134, 106619(2021).
[3] Zhu L D, Xue P S, Lan Q et al. Recent research and development status of laser cladding: a review[J]. Optics & Laser Technology, 138, 106915(2021).
[4] Liu Y N, Ding Y, Yang L J et al. Research and progress of laser cladding on engineering alloys: a review[J]. Journal of Manufacturing Processes, 66, 341-363(2021).
[5] Wen J H, Ding Y C, Zhao Z L. Application status and prospect of additive repair technology[J]. Applied Laser, 43, 109-118(2023).
[6] Li X B, Li T, Shi B W et al. The influence of substrate tilt angle on the morphology of laser cladding layer[J]. Surface and Coatings Technology, 391, 125706(2020).
[7] Hao J B, Yang S, Le X W et al. Bead morphology prediction of coaxial laser cladding on inclined substrate using machine learning[J]. Journal of Manufacturing Processes, 98, 159-172(2023).
[8] Alya S, Vundru C, Ankamreddy B et al. Characterization and modeling of deposition geometry in directed energy deposition over inclined surfaces[J]. Procedia Manufacturing, 34, 695-703(2019).
[9] Zhu G X, Shi S H, Fu G Y et al. The influence of the substrate-inclined angle on the section size of laser cladding layers based on robot with the inside-beam powder feeding[J]. The International Journal of Advanced Manufacturing Technology, 88, 2163-2168(2017).
[10] Wang D, Li T, Shi B W et al. An analytical model of bead morphology on the inclined substrate in coaxial laser cladding[J]. Surface and Coatings Technology, 410, 126944(2021).
[11] Teimouri R, Sohrabpoor H, Grabowski M et al. Simulation of surface roughness evolution of additively manufactured material fabricated by laser powder bed fusion and post-processed by burnishing[J]. Journal of Manufacturing Processes, 84, 10-27(2022).
[12] Wang H Z, Wang Y L, Jiang F L et al. Effect of laser remelting on microstructure, element distribution and crack sensitivity of Al2O3-ZrO2 laser cladding layer on TC4 titanium alloy surface[J]. Surface Technology, 51, 380-391(2022).
[13] Zhang Y Z, Ge H H, Jin C Y et al. Distribution mechanism of Cr element during laser cladding overlapping process of 316L powder on 45 steel substrate[J]. Chinese Journal of Lasers, 50, 0802204(2023).
[14] Wang J S, Shu L S. Effect of laser remelting path on residual stress and surface quality of remanufactured coatings[J]. Laser & Optoelectronics Progress, 60, 0714010(2023).
[15] Bukhari S M A, Husnain N, Siddiqui F A et al. Effect of laser surface remelting on microstructure, mechanical properties and tribological properties of metals and alloys: a review[J]. Optics & Laser Technology, 165, 109588(2023).
[16] Cho M H, Lim Y C, Farson D F. Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape[J]. Welding Journal, 85, 271s-283s(2006).
[17] Cho J H, Farson D F, Milewski J O et al. Weld pool flows during initial stages of keyhole formation in laser welding[J]. Journal of Physics D: Applied Physics, 42, 175502(2009).
[18] Voller V R, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 30, 1709-1719(1987).
[19] Pinkerton A J. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition[J]. Journal of Physics D: Applied Physics, 40, 7323-7334(2007).
[20] Chen L Y, Zhao Y, Song B X et al. Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding[J]. Optics & Laser Technology, 139, 107009(2021).
[21] Voller V R, Brent A D, Prakash C. The modelling of heat, mass and solute transport in solidification systems[J]. International Journal of Heat and Mass Transfer, 32, 1719-1731(1989).
[22] Saldi Z S, Kidess A, Kenjereš S et al. Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel[J]. International Journal of Heat and Mass Transfer, 66, 879-888(2013).
[23] Wang P F, Yang K, Chen M Z et al. Simulation and experimental research on the GH3536 molten pool laser cladding on inclined substrate[J]. Chinese Journal of Lasers, 48, 1002121(2021).
[24] Liu C M, Li C G, Zhang Z et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys[J]. Optics & Laser Technology, 123, 105926(2020).
Get Citation
Copy Citation Text
Jingbin Hao, Hongren Liu, Shu Yang, Yiyang Liu, Hao Liu, Haifeng Yang. Simulation and Experimental Study of Effects of In-Situ Remelting on Morphology Modification and Microstructure Evolution of Laser Cladding Layer on Inclined Substrates[J]. Chinese Journal of Lasers, 2024, 51(16): 1602203
Category: Laser Surface Machining
Received: Sep. 1, 2023
Accepted: Nov. 13, 2023
Published Online: Mar. 22, 2024
The Author Email: Liu Hongren (liuhongren@cumt.edu.cn)
CSTR:32183.14.CJL231161