Opto-Electronic Advances, Volume. 6, Issue 9, 220154(2023)

ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection

Maria Baeva1,2,3, Dmitry Gets2, Artem Polushkin2, Aleksandr Vorobyov1, Aleksandr Goltaev1, Vladimir Neplokh1,4, Alexey Mozharov1, Dmitry V. Krasnikov5, Albert G. Nasibulin5, Ivan Mukhin1,4、*, and Sergey Makarov2,6、**
Author Affiliations
  • 1Alferov University, Khlopina 8/3, St. Petersburg 194021, Russia
  • 2Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 197101, Russia
  • 3Institute of Automation and Control Processes (IACP), Far Eastern Branch of Russian Academy of Sciences, Ulitsa Radio 5, Vladivostok 690041, Primorsky Krai, Russia
  • 4Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
  • 5Skolkovo Institute of Science and Technology, Nobel 3, Moscow 121205, Russia
  • 6Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
  • show less
    References(56)

    [1] M Era, S Morimoto, T Tsutsui, S Saito. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett, 676-678(1994).

    [2] SA Veldhuis, PP Boix, N Yantara, MJ Li, TC Sum et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 6804-6834(2016).

    [3] QS Shan, JZ Song, YS Zou, JH Li, LM Xu et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small, 1701770(2017).

    [4] P Jia, M Lu, SQ Sun, YB Gao, R Wang et al. Recent advances in flexible perovskite light-emitting diodes. Adv Mater Interfaces, 2100441(2021).

    [5] XK Liu, WD Xu, S Bai, YZ Jin, JP Wang et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 10-21(2021).

    [6] M Lu, Y Zhang, SX Wang, J Guo, WW Yu et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater, 1902008(2019).

    [7] ZT Li, K Cao, JS Li, Y Tang, XR Ding et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv, 200019(2021).

    [8] A Elbanna, K Chaykun, Y Lekina, YD Liu, B Febriansyah et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci, 220006(2022).

    [9] K Youssef, Y Li, S O’Keeffe, L Li, QB Pei. Fundamentals of materials selection for light-emitting electrochemical cells. Adv Funct Mater, 1909102(2020).

    [10] D Gets, M Alahbakhshi, A Mishra, R Haroldson, A Papadimitratos et al. Reconfigurable perovskite LEC: effects of ionic additives and dual function devices. Adv Opt Mater, 2001715(2021).

    [11] YC Ling, Y Tian, X Wang, JC Wang, JM Knox et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv Mater, 8983-8989(2016).

    [12] S Chang, ZL Bai, HZ Zhong. In situ fabricated perovskite nanocrystals: a revolution in optical materials. Adv Opt Mater, 1800380(2018).

    [13] TF Xu, Y Meng, MS Wang, MX Li, M Ahmadi et al. Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission. J Mater Chem C, 8287-8293(2019).

    [14] WQ Cai, ZM Chen, ZC Li, L Yan, DL Zhang et al. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red light-emitting devices. ACS Appl Mater Interfaces, 42564-42572(2018).

    [15] Velu K Sakthi, Raj J Anandha, P Sathappan, Bharathi B Suganya, Doss S Mohan et al. Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell. Mater Lett, 132-135(2019).

    [16] DH Kim, YC Kim, HJ An, JM Myoung. Enhanced brightness of red light-emitting diodes based on CsPbBrxI3-x-PEOXA composite films. J Alloys Compd, 156272(2020).

    [17] U Bansode, A Rahman, S Ogale. Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J Mater Chem C, 6986-6996(2019).

    [18] KH Wang, L Wang, YY Liu, YH Song, YC Yin et al. High quality CsPbI3-xBrx thin films enabled by synergetic regulation of fluorine polymers and amino acid molecules for efficient pure red light emitting diodes. Adv Opt Mater, 2001684(2021).

    [20] AS Miroshnichenko, KV Deriabin, M Baeva, FM Kochetkov, V Neplokh et al. Flexible perovskite CsPbBr3 light emitting devices integrated with GaP nanowire arrays in highly transparent and durable functionalized silicones. J Phys Chem Lett, 9672-9676(2021).

    [22] M Alahbakhshi, A Papadimitratos, R Haroldson, A Mishra, A Ishteev et al. Bright perovskite light-emitting electrochemical cell utilizing CNT sheets as a tunable charge injector. Proc SPIE, 114731N(2020).

    [23] A Mishra, M Alahbakhshi, R Haroldson, Q Gu, AA Zakhidov et al. Pure blue electroluminescence by differentiated ion motion in a single layer perovskite device. Adv Funct Mater, 2102006(2021).

    [24] A Mishra, M Alahbakhshi, R Haroldson, LD Bastatas, Q Gu et al. Enhanced operational stability of perovskite light-emitting electrochemical cells leveraging ionic additives. Adv Opt Mater, 2000226(2020).

    [25] CH Tien, NP Yeh, KL Lee, LC Chen. Achieving matrix quantum dot light-emitting display based on all-inorganic CsPbBr3 perovskite nanocrystal composites. IEEE Access, 128919-128924(2021).

    [26] PP Teng, S Reichert, WD Xu, SC Yang, F Fu et al. Degradation and self-repairing in perovskite light-emitting diodes. Matter, 3710-3724(2021).

    [27] AR Bowring, L Bertoluzzi, BC O’Regan, MD McGehee. Reverse bias behavior of halide perovskite solar cells. Adv Energy Mater, 1702365(2018).

    [28] M Lokanc, R Eggert, M Redlinger. The availability of indium: the present, medium term, and long term. Golden: National Renewable Energy Laboratory(2015).

    [29] JS Xie, PJ Hang, H Wang, SH Zhao, G Li et al. Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering. Adv Mater, 1902543(2019).

    [30] QS Shan, CT Wei, Y Jiang, JZ Song, YS Zou et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci Appl, 163(2020).

    [31] DH Shin, SH Shin, SH Choi. Self-powered and flexible perovskite photodiode/solar cell bifunctional devices with MoS2 hole transport layer. Appl Surf Sci, 145880(2020).

    [32] ZD Liu, CH Duan, F Liu, CCS Chan, HP Zhu et al. Perovskite bifunctional diode with high photovoltaic and electroluminescent performance by holistic defect passivation. Small, 2105196(2022).

    [33] SZ Yang, ZL Guo, LG Gao, FY Yu, C Zhang et al. Bifunctional dye molecule in all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 10%. Sol RRL, 1900212(2019).

    [34] XL Li, KC Long, G Zhang, WT Zou, SQ Jiang et al. Lead-free perovskite-based bifunctional device for both photoelectric conversion and energy storage. ACS Appl Energy Mater, 7952-7958(2021).

    [35] AA Marunchenko, MA Baranov, EV Ushakova, DR Ryabov, AP Pushkarev et al. Single-walled carbon nanotube thin film for flexible and highly responsive perovskite photodetector. Adv Funct Mater, 2109834(2022).

    [36] E Manousakis. Optimizing the role of impact ionization in conventional insulators. Sci Rep, 20395(2019).

    [38] H Xu, XC Wang, Y Li, L Cai, YS Tan et al. Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display. J Phys Chem Lett, 3689-3698(2020).

    [39] NJ Zhou, Y Bekenstein, CN Eisler, DD Zhang, AM Schwartzberg et al. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci Adv, eaav8141(2019).

    [40] EM Khabushev, DV Krasnikov, OT Zaremba, AP Tsapenko, AE Goldt et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J Phys Chem Lett, 6962-6966(2019).

    [41] IV Anoshkin, AG Nasibulin, Y Tian, BL Liu, H Jiang et al. Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon, 130-136(2014).

    [42] AP Tsapenko, AE Goldt, E Shulga, ZI Popov, KI Maslakov et al. Highly conductive and transparent films of HAuCl4-doped single-walled carbon nanotubes for flexible applications. Carbon, 448-457(2018).

    [43] A Kaskela, AG Nasibulin, MY Timmermans, B Aitchison, A Papadimitratos et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett, 4349-4355(2010).

    [44] SX Tao, I Schmidt, G Brocks, JK Jiang, I Tranca et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat Commun, 2560(2019).

    [45] MI Saidaminov, MA Haque, J Almutlaq, S Sarmah, XH Miao et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv Opt Mater, 1600704(2017).

    [46] Z Yang, A Surrente, K Galkowski, A Miyata, O Portugall et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett, 1621-1627(2017).

    [47] QA Akkerman, SG Motti, Kandada AR Srimath, E Mosconi, V D’innocenzo et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc, 1010-1016(2016).

    [48] YP Varshni. Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (I). Phys Status Solidi (B), 459-514(1967).

    [49] S Adachi. Properties of Group-IV, III-V and II-VI Semiconductors(2005).

    [50] C Jacoboni, C Canali, G Ottaviani, AA Quaranta. A review of some charge transport properties of silicon. Solid State Electron, 77-89(1977).

    [51] Alamo JA del, RM Swanson. Modelling of minority-carrier transport in heavily doped silicon emitters. Solid State Electron, 1127-1136(1987).

    [52] MS Tyagi, Overstraeten R Van. Minority carrier recombination in heavily-doped silicon. Solid State Electron, 577-597(1983).

    [53] J Piprek. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation(2003).

    [54] SM Sze, YM Li, KK Ng. Physics of Semiconductor Devices(2021).

    [55] L Atourki, E Vega, M Mollar, B Marí, H Kirou et al. Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3-xIx (0 ≤ x ≤ 1). J Alloys Compd, 404-409(2017).

    [56] A Mikhailova, MP Rogachev. Impact ionization and Auger recombination in InAs. Sov Phys Semicond, 866-871(1976).

    Tools

    Get Citation

    Copy Citation Text

    Maria Baeva, Dmitry Gets, Artem Polushkin, Aleksandr Vorobyov, Aleksandr Goltaev, Vladimir Neplokh, Alexey Mozharov, Dmitry V. Krasnikov, Albert G. Nasibulin, Ivan Mukhin, Sergey Makarov. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection[J]. Opto-Electronic Advances, 2023, 6(9): 220154

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 20, 2022

    Accepted: Feb. 27, 2023

    Published Online: Nov. 15, 2023

    The Author Email:

    DOI:10.29026/oea.2023.220154

    Topics