Laser & Optoelectronics Progress, Volume. 60, Issue 22, 2210003(2023)

Lung Nodule CT Image Classification Based on Adaptive Aggregate Weight Federated Learning

Jiangfeng Shi1, Bao Feng2、*, Yehang Chen2, and Xiangmeng Chen3
Author Affiliations
  • 1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, Guangxi , China
  • 2Laboratory of Artificial Intelligence of Biomedicine, Guilin University of Aerospace Technology, Guilin 541004, Guangxi , China
  • 3Laboratory of Intelligent Computing and Application of Medical Imaging, Jiangmen Central Hospital, Jiangmen 529030, Guangdong , China
  • show less
    References(21)

    [1] Travis W D, Brambilla E, Noguchi M et al. International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma: executive summary[J]. Journal of Thoracic Oncology, 8, 381-385(2011).

    [2] Müller M, Gromicho M, de Carvalho M et al. Explainable models of disease progression in ALS: learning from longitudinal clinical data with recurrent neural networks and deep model explanation[J]. Computer Methods and Programs in Biomedicine Update, 1, 100018(2021).

    [3] Di S H, Yang W H, Liao M et al. Liver tumor segmentation from CT images based on RA-Unet[J]. Chinese Journal of Scientific Instrument, 43, 65-72(2022).

    [4] He F F, Zhang Q, Yang C et al. Application of image segmentation methods based on deep learning in aortic diseases[J]. Journal of Clinical Cardiology, 38, 449-454(2022).

    [5] Liu Q D, Chen C, Qin J et al. FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space[C], 1013-1023(2021).

    [6] Sheller M J, Reina G A, Edwards B et al. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation[M]. Crimi A, Bakas S, Kuijf H, et al. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Lecture notes in computer science, 11383, 92-104(2019).

    [9] Li Q B, He B S, Song D. Model-contrastive federated learning[C], 10708-10717(2021).

    [10] Jiang M R, Wang Z R, Dou Q. HarmoFL: harmonizing local and global drifts in federated learning on heterogeneous medical images[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 1087-1095(2022).

    [15] Schlemper J, Oktay O, Schaap M et al. Attention gated networks: learning to leverage salient regions in medical images[J]. Medical Image Analysis, 53, 197-207(2019).

    [17] Yang M, Zhang Y X, Wang X Z et al. Multi-instance ensemble learning with discriminative bags[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 5456-5467(2022).

    [18] Khellal A, Ma H B, Fei Q. Convolutional neural network based on extreme learning machine for maritime ships recognition in infrared images[J]. Sensors, 18, 1490(2018).

    [19] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 70, 489-501(2006).

    Tools

    Get Citation

    Copy Citation Text

    Jiangfeng Shi, Bao Feng, Yehang Chen, Xiangmeng Chen. Lung Nodule CT Image Classification Based on Adaptive Aggregate Weight Federated Learning[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2210003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 11, 2022

    Accepted: Feb. 22, 2023

    Published Online: Nov. 6, 2023

    The Author Email: Feng Bao (fengbao1986.love@163.com)

    DOI:10.3788/LOP223027

    Topics