Laser & Optoelectronics Progress, Volume. 60, Issue 22, 2210003(2023)

Lung Nodule CT Image Classification Based on Adaptive Aggregate Weight Federated Learning

Jiangfeng Shi1, Bao Feng2、*, Yehang Chen2, and Xiangmeng Chen3
Author Affiliations
  • 1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, Guangxi , China
  • 2Laboratory of Artificial Intelligence of Biomedicine, Guilin University of Aerospace Technology, Guilin 541004, Guangxi , China
  • 3Laboratory of Intelligent Computing and Application of Medical Imaging, Jiangmen Central Hospital, Jiangmen 529030, Guangdong , China
  • show less
    Figures & Tables(19)
    Overall algorithm block diagram
    Federated learning training process of accurate value threshold scheduling
    Framework of MsaNet
    Framework of MHSA
    Feature extraction process
    Integrated SBELML1 classifier construction
    Flowchart of adversarial verification algorithm
    Federal loss curve
    AUC curve of each center test cohort
    Distribution of anti-interference experimental data. (a) Proportion of positive and negative sample data; (b) FedAaw anti-interference experiment
    • Table 1. Division results of adversarial verification

      View table

      Table 1. Division results of adversarial verification

      CenterTrain cohortTest cohort
      LTB caseLAC caseLTB caseLAC case
      Center 110515586156
      Center 214261037
      Center 3321202576
      Center 42633128
      Center 5237346
    • Table 2. Comparison of AUC results of different models and Aaw threshold parameters

      View table

      Table 2. Comparison of AUC results of different models and Aaw threshold parameters

      CenterQ=0Q=0.5Q=0.8
      ResNet18MsaNet18ResNet18MsaNet18ResNet18MsaNet18
      TrainTestTrainTestTrainTestTrainTestTrainTestTrainTest
      Center 10.89870.74670.93930.75190.90300.73730.94590.77320.87040.74310.89380.8037
      Center 20.93680.76220.94230.81350.90930.79190.94230.83510.92580.77840.93130.8405
      Center 30.83410.67260.91540.70470.92760.73170.94640.71260.86380.70890.95260.7758
      Center 40.83450.82290.89280.85420.90910.82290.89160.85420.88230.83330.91380.9063
      Center 50.90540.80430.94590.87680.91890.81880.91890.89860.93240.83330.94590.9348
    • Table 3. When Q=0, MsaNet18 test set performance indicator

      View table

      Table 3. When Q=0, MsaNet18 test set performance indicator

      ParameterCenter 1Center 2Center 3Center 4Center 5Sum
      Sensitivity0.7821(122/156)0.6486(24/37)0.4737(36/76)0.7500(6/8)0.8261(38/46)0.6996(226/323)
      Specificity0.6628(57/86)0.9000(9/10)0.8800(22/25)0.8333(10/12)1.0000(3/3)0.7426(101/136)
      Accuracy0.7397(179/242)0.7021(33/47)0.5743(58/101)0.8000(16/20)0.8367(41/49)0.7124(327/459)
    • Table 4. When Q=0.5, MsaNet18 test set performance indicator

      View table

      Table 4. When Q=0.5, MsaNet18 test set performance indicator

      ParameterCenter 1Center 2Center 3Center 4Center 5Sum
      Sensitivity0.8077(126/156)0.8108(30/37)0.6711(51/76)0.8750(7/8)0.8261(38/46)0.7802(252/323)
      Specificity0.6279(54/86)0.9000(9/10)0.8400(21/25)0.7500(9/12)1.0000(3/3)0.7059(96/136)
      Accuracy0.7438(180/242)0.8298(39/47)0.7129(72/101)0.8000(16/20)0.8367(41/49)0.7581(348/459)
    • Table 5. When Q=0.8, MsaNet18 test set performance indicator

      View table

      Table 5. When Q=0.8, MsaNet18 test set performance indicator

      ParameterCenter 1Center 2Center 3Center 4Center 5Sum
      Sensitivity0.8333(130/156)0.7568(28/37)0.6579(50/76)1.0000(8/8)0.9348(43/46)0.8019(259/323)
      Specificity0.6395(55/86)0.9000(9/10)0.8000(20/25)0.6667(8/12)1.0000(3/3)0.6985(95/136)
      Accuracy0.7645(185/242)0.7872(37/47)0.6931(70/101)0.8000(16/20)0.9388(46/49)0.7712(354/459)
    • Table 6. AUC results of different federal algorithms on lung nodule classification tasks

      View table

      Table 6. AUC results of different federal algorithms on lung nodule classification tasks

      AlgorithmCenter 1Center 2Center 3Center 4Center 5
      FedAvg0.60770.81590.58490.53030.6622
      FedProx0.82280.98900.82320.99300.9189
      Moon0.63710.87090.67890.75870.7027
      HarmoFL0.77990.97800.57270.94050.6216
      FedAaw0.99630.99880.93750.63950.7605
    • Table 7. AUC results of different federal algorithms on lung nodule classification tasks

      View table

      Table 7. AUC results of different federal algorithms on lung nodule classification tasks

      AlgorithmCenter 1Center 2Center 3Center 4Center 5
      FedAvg0.64730.73510.59320.44790.5870
      FedProx0.65060.72970.37580.33330.2899
      Moon0.64910.65680.51420.56520.7101
      HarmoFL0.65200.77030.29370.53130.3551
      FedAaw0.69430.70130.55910.66170.8478
    • Table 8. Results of federal anti-interference experimental training set

      View table

      Table 8. Results of federal anti-interference experimental training set

      DistributionMethodCenter 1Center 2Center 3Center 4Center 5
      Distribution 1Distributed learning0.89630.91480.92680.88580.8919
      Federated learning0.89380.93130.95260.91380.9459
      Distribution 2Distributed learning0.86820.92860.87700.87890.8917
      Federated learning0.88160.94050.92000.93680.9417
      Distribution 3Distributed learning0.83230.93060.92860.86320.9000
      Federated learning0.90980.82640.82620.90530.9000
    • Table 9. Results of federal anti-interference experimental test set

      View table

      Table 9. Results of federal anti-interference experimental test set

      DistributionMethodCenter 1Center 2Center 3Center 4Center 5
      Distribution 1Distributed learning0.76860.83780.68210.76040.8261
      Federated learning0.80370.84050.77580.90630.9348
      Distribution 2Distributed learning0.74530.74050.63310.72930.5797
      Federated learning0.79470.84050.67680.86720.9275
      Distribution 3Distributed learning0.76240.73860.65110.81200.8478
      Federated learning0.80200.81050.68750.84960.8913
    Tools

    Get Citation

    Copy Citation Text

    Jiangfeng Shi, Bao Feng, Yehang Chen, Xiangmeng Chen. Lung Nodule CT Image Classification Based on Adaptive Aggregate Weight Federated Learning[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2210003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 11, 2022

    Accepted: Feb. 22, 2023

    Published Online: Nov. 6, 2023

    The Author Email: Feng Bao (fengbao1986.love@163.com)

    DOI:10.3788/LOP223027

    Topics