Acta Optica Sinica, Volume. 40, Issue 20, 2015001(2020)
Local Feature Description of LiDAR Point Cloud Data Based on Hierarchical Mercator Projection
[1] Aldoma A, Vincze M, Blodow N et al. CAD-model recognition and 6DOF pose estimation using 3D cues. [C]∥2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), November 6-13, 2011, Barcelona, Spain. New York: IEEE, 585-592(2011).
[2] Rusu R B, Bradski G, Thibaux R et al. Fast 3D recognition and pose using the viewpoint feature histogram. [C]∥2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan, China. New York: IEEE, 2155-2162(2010).
[8] Simo-Serra E, Trulls E, Ferraz L et al. Discriminative learning of deep convolutional feature point descriptors. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 118-126(2015).
[9] Charles R Q, Su H, Kaichun M et al. PointNet: deep learning on point sets for 3D classification and segmentation. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 77-85(2017).
[10] Qi C R, Yi L, Su H et al[2020-04-20]. PointNet++: deep hierarchical feature learning on point sets in a metric space [2020-04-20].https: ∥arxiv., org/abs/1706, 02413.
[11] Zeng A, Song S R, Nießner M et al. 3DMatch: learning local geometric descriptors from RGB-D reconstructions. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 199-208(2017).
[12] Khoury M, Zhou Q Y, Koltun V. Learning compact geometric features. [C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE, 153-161(2017).
[13] Yang Y Q, Feng C, Shen Y R et al. FoldingNet: point cloud auto-encoder via deep grid deformation. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 206-215(2018).
[14] Yew Z J, Lee G H. 3DFeat-Net: weakly supervised local 3D features for point cloud registration[M]. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision-ECCV 2018. Lecture Notes in Computer Science. Cham: Springer, 11219, 630-646(2016).
[15] Zhao B, Xi J T. Efficient and accurate 3D modeling based on a novel local feature descriptor[J]. Information Sciences, 512, 295-314(2020).
[16] Tombari F, Salti S, Stefano L. Unique signatures of histograms for local surface description[M]. ∥Daniilidis K, Maragos P, Paragios N, et al. Computer Vision-ECCV 2010. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 6313, 356-369(2010).
[17] Novatnack J, Nishino K. Scale-dependent/invariant local 3D shape descriptors for fully automatic registration of multiple sets of range images[M]. ∥Forsyth D, Torr P, Zisserman A, et al. Computer Vision-ECCV 2008. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 5304, 440-453(2008).
[18] Sun Y, Abidi M A. Surface matching by 3D point's fingerprint. [C]∥Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, July 7-14, 2001, Vancouver, BC, Canada. New York: IEEE, 263-269(2001).
[19] Levoy M, Gerth J, Curless B et al. -05-07)[2020-04-25]. http: ∥graphics.stanford.edu/data/3Dscanrep/.(2005).
[20] Guo Y, Sohel F A, Bennamoun M et al. TriSI: a distinctive local surface descriptor for 3D modeling and object recognition. [C]∥Conference 8th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, February 21-24, 2013, Barcelona, Spain. Barcelona, Spain: Scitepress, 1, 86-93(2013).
Get Citation
Copy Citation Text
Shangtai Gu, ling Wang, Yanxin Ma, Chao Ma. Local Feature Description of LiDAR Point Cloud Data Based on Hierarchical Mercator Projection[J]. Acta Optica Sinica, 2020, 40(20): 2015001
Category: Machine Vision
Received: May. 13, 2020
Accepted: Jul. 6, 2020
Published Online: Sep. 30, 2020
The Author Email: Gu Shangtai (shangtai_gu@163.com), Wang ling (wanglanne@139.com)