Acta Optica Sinica, Volume. 40, Issue 20, 2015001(2020)

Local Feature Description of LiDAR Point Cloud Data Based on Hierarchical Mercator Projection

Shangtai Gu1、*, ling Wang1、**, Yanxin Ma2, and Chao Ma1
Author Affiliations
  • 1College of Electronic Science, National University of Defense Technology, PLA, Changsha, Hunan 410073, China
  • 2College of Meteorology and Oceanography, National University of Defense Technology, PLA, Changsha, Hunan 410073, China
  • show less
    Figures & Tables(9)
    Schematic diagram of hierarchical Mercator projection
    Plane of hierarchical Mercator projection (5 layers)
    Flow chart of hierarchical Mercator projection (3 layers)
    Influence of the number of Mercator projection layers on the recognition performance of the algorithm (Bologna dataset)
    Influence of the number of Mercator projection layers on the recognition performance of the algorithm (3DMatch dataset)
    PRC of different feature extraction algorithms. (a) Noise variance is 0.3 times point cloud resolution; (b) noise variance is 0.5 times point cloud resolution; (c) noise variance is 0.8 times point cloud resolution; (d) noise variance is 1.5 times point cloud resolution rate
    • Table 1. Runtime and average precision of hierarchical Mercator projection (Bologna dataset)

      View table

      Table 1. Runtime and average precision of hierarchical Mercator projection (Bologna dataset)

      Number of layersRuntime /sAverage accuracy /%
      11034.83590.0381
      3758.03630.3251
      5690.62500.5222
      10598.67000.7456
      20602.92230.8804
      30835.46650.8767
      501278.12520.7408
      10013052.37270.6823
    • Table 2. Runtime and average precision of hierarchical Mercator projection (3DMatch dataset)

      View table

      Table 2. Runtime and average precision of hierarchical Mercator projection (3DMatch dataset)

      Number of layersRuntime /sAverage accuracy /%
      14732.56920.0433
      33069.17230.1214
      51135.24170.3044
      10625.36450.5471
      20858.36940.7182
      3025685.23600.5958
    • Table 3. Average accuracy and operation time of different feature extraction algorithms

      View table

      Table 3. Average accuracy and operation time of different feature extraction algorithms

      AlgorithmRun- time /sAverage accuracy in different noise /%
      0.30.50.81.5
      TriS655.64980.9790.8850.6000.803
      Sgh11100.85730.9860.9740.7770.142
      RoPS1593.71441.0000.9960.9990.994
      SHOT854.80460.9970.9940.9620.006
      MaSH219.63540.9990.8280.1510.027
      SDASS122.61091.0000.9400.1650.035
      Toldi25.05740.9940.9830.3630.803
      LFSH308.22090.8810.5070.1200.029
      DLFS913.49140.8560.6900.5750.077
      HMec-20557.45171.0001.0001.0000.995
    Tools

    Get Citation

    Copy Citation Text

    Shangtai Gu, ling Wang, Yanxin Ma, Chao Ma. Local Feature Description of LiDAR Point Cloud Data Based on Hierarchical Mercator Projection[J]. Acta Optica Sinica, 2020, 40(20): 2015001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 13, 2020

    Accepted: Jul. 6, 2020

    Published Online: Sep. 30, 2020

    The Author Email: Gu Shangtai (shangtai_gu@163.com), Wang ling (wanglanne@139.com)

    DOI:10.3788/AOS202040.2015001

    Topics