Acta Optica Sinica, Volume. 45, Issue 17, 1720010(2025)

Advances in Integration of Co‑Packaged High‑Density Optical Interconnection Chips (Invited)

Jintao Xue1,2, Shenlei Bao1,2, Chao Cheng1,2, Xianglin Bu1,2, Qian Liu1,2, Liqun Wei1,2, Yihao Yang1,2, Wenfu Zhang1,2, and Binhao Wang1,2、*
Author Affiliations
  • 1State Key Laboratory of Ultrafast Optical Science and Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, Shaanxi , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(17)
    Schematic of a silicon-based micro-ring optical engine co-packaged with an XPU
    Research progress of multi-wavelength lasers. (a) 16-channel laser SuperNova by Ayar Labs[25]; (b) 4×4 200 GHz DFB array laser by Intel[26]; (c) dark-pulse optical frequency comb laser and array MZM transmitter[27]; (d) Kerr optical frequency comb and micro-ring array transmitter[28]; (e) quantum dot FP cavity mode-locked laser by Innolume[29]; (f) quantum dot mode-locked laser by Institute of Physics, Chinese Academy of Sciences[30]
    Research progress of MRMs. (a) Carrier-injection-type MRM by Cornell University[34]; (b) carrier-depletion-type MRM by University of Surrey[35]; (c) carrier-depletion-type MRM by Oracle Corporation[36]; (d) lateral-junction 100% doped MRM by XIOPM[37]; (e) L-shaped-junction MRM by Intel Corporation[38]; (f) dual-segment MRM by HPE[39]; (g) vertical-junction spoke MRM by Ayar Labs[40]; (h) vertical-junction MRM by AMD[41]; (i) interdigitated-electrode vertical-junction MDM by Columbia University[42]; (j) vertical-junction MDM by Beijing Institute of Technology[43]
    Research progress of micro-ring thermal control. (a) Multi-metric thermal tuning by University of Toronto[49]; (b) independent optical power level tracking thermal tuning by University of California, Berkeley[50]; (c) dual-mode calibrated thermal tuning by Yonsei University[51]; (d) high-precision closed-loop feedback thermal tuning by ETH Zurich[52]
    Research progress of silicon-based germanium detectors. (a) Inductive-peaking vertical-PIN silicon-based germanium detector by HUST[57]; (b) U-shaped-electrode vertical-PIN silicon-based germanium detector by HUST[58]; (c) fin-shaped PIN silicon-based germanium detector by IHP[59]
    Three types of DWDM receivers capable of receiving arbitrary polarization. (a) Polarization-insensitive micro-ring DWDM receiver structure; (b) polarization-diverse micro-ring DWDM receiver structure; (c) active polarization-tracking micro-ring DWDM receiver structure
    Research progress of CMOS drivers for MRM. (a) 45 nm SOI micro-ring driver by University of California, Berkeley[67]; (b) Intel nonlinear equalization micro-ring driver[53]; (c) Intel 8-channel micro-ring driver[68]; (d) ISCAS dual-segment micro-ring driver[69]
    Research progress of CMOS TIA. (a) Regulated shunt-feedback TIA by Intel[70]; (b) low-noise TIA by ISCAS[71]; (c) 16 nm three-stage TIA by University of Toronto[72]; (d) 7 nm FinFET three-stage TIA by AMD[73]
    Side view of the integrated packaging forms of the micro-ring optical engine. (a) 2.5D integrated packaging; (b) FOWLP integrated packaging; (c) 3D integrated packaging; (d) monolithic integration
    Research progress of optical engine substrate. (a) Low-temperature co-fired ceramic interposer by Acacia[82]; (b) glass interposer packaging by The Georgia Institute of Technology[83]; (c) silicon interposer technology by IMEC[84]; (d) cavity-embedded organic substrate by NCAP[85]
    Research progress of optical engine fiber connectors. (a) Reflow-compatible silicon optical engine package by IBM[86]; (b) pluggable optical connector by Intel[88]; (c) glass optical connector by Corning[90]; (d) vertical optical coupling connector by US Conec[91]
    • Table 1. Multi-wavelength laser comparison

      View table

      Table 1. Multi-wavelength laser comparison

      YearAffiliationSource type

      λ /

      μm

      Number

      of λ

      P /

      mW

      Channel

      spacing /GHz

      SMSR /

      dB

      Operating

      temperature /℃

      Ref.
      2024Ayar LabsDFB array1.311625200>4020‒10025
      2024IntelDFB array1.311650200>5026
      2022Peking UniversityAlGaAsOI microcombs1.5520180>502731
      2025HUSTKerr microcombs1.5520100>5028
      2025InnolumeQD MLL1.3124>1.710029
      2025Institute of Physics, Chinese Academy of SciencesQD MLL1.314~0.210038‒8030
      2025Institute of Physics, Chinese Academy of SciencesQD MLL1.318~0.3100~4032
    • Table 2. Performance comparison of MRMs and MDMs

      View table

      Table 2. Performance comparison of MRMs and MDMs

      YearAffiliationTypeModulationJunctionFSR /nmQEfficiency

      3 dB

      bandwidth /GHz

      Ref.
      2005Cornell UniversityRingInjectionLateral153935034
      2009University of SurreyRingDepletionLateral40.231303.46 V·cm1935
      2011OracleRingDepletionLateral12.880001.27 V·cm16.336
      2025XIOPMRingDepletionLateral1125000.6 V·cm>6737
      2019IntelRingDepletionL-shape6.650000.53 V·cm543847
      2024TSMCRingDepletionL-shape530000.35 V·cm763847
      2024HPERingDepletionZ-shape5.737000.6 V·cm48.939
      2021Boston UniversityRingDepletionVertical6500‒450000.2 nm/V*4.840
      2024AMDRingDepletionVertical21.545000.58 V·cm4141
      2024Columbia UniversityDiskDepletionVertical2760000.3 nm/V*~2042
      2024Beijing Institue of TechnologyDiskDepletionLateral29.445184.27 V·cm30.543
    • Table 3. Comparison of micro-ring self-feedback thermal tuning circuits

      View table

      Table 3. Comparison of micro-ring self-feedback thermal tuning circuits

      YearAffiliationFeedback logicMonitor typeHeaterTuning efficiencyTunable range /nmTemperature range /℃Ref.
      2024University of TorontoOMA/RLM/ERIcavity & IthroughResistor25‒10049
      2016University of California, BerkeleyOMAIdropResistor1.25 nm/mW2.525‒7550
      2020IntelOMAIthroughResistor63 pm/K8.328‒5553
      2021Yonsei UniversityOMAIdropResistor0.158 nm/mW3.2723‒3751
      2021IntelILIcavityResistor0.096 nm/mW4.835‒4554
      2022HUSTILIdropResistor0.135 nm/mW955
      2021ETH ZurichPhotocurrentIcavityResistor0.8 nm/mW1.725‒4152
      2014Texas A&M UniversityERIdrop & IthroughPN junction1.47 nm/V0.2856
    • Table 4. Comparison of silicon‒germanium detectors

      View table

      Table 4. Comparison of silicon‒germanium detectors

      YearAffiliationJunction typeDark current /nAResponsivity /(A/W)3 dB bandwidth /GHzRef.
      2021HUSTVertical6.40.898057
      2024HUSTVertical1.30.9510358
      2020IHPLateral300>0.6>11060
      2021IHPLateral100‒2000.326561
      2024TSMCLateral4.51.011047
    • Table 5. Comparison of silicon-based micro-ring drivers

      View table

      Table 5. Comparison of silicon-based micro-ring drivers

      YearAffiliationEICER /dBData rate /(Gbit/s)On-chip EQ

      Power efficiency /

      (pJ/bit)

      Area /

      mm2

      Ref.
      2018University of California45 nm SOI3400.330.02867
      2021Intel28 nm CMOS2.7112FFE+NL-EQ5.853
      2023Intel28 nm CMOS4.932R+L CTLE1.345.168
      2024Institute of Semiconductors, CAS28 nm CMOS3.264CTLE+FFE5.61.869
    • Table 6. Comparison of silicon-based micro-ring TIAs

      View table

      Table 6. Comparison of silicon-based micro-ring TIAs

      YearAffiliationEICPolarization

      Data rate /

      (Gbit/s)

      TIA gain

      Power efficiency /

      (pJ/bit)

      SensitivityRef.
      2023Intel28 nm CMOSDependent3275 dBΩ3.8-10 dBm@32 Gbit/s70
      2024XIOPM28 nm CMOSIndependent6458 dBΩ1.53-7.0 dBm@64 Gbit/s71
      2023University of Toronto16 nm CMOSDependent64630.69-7.6 dBm@64 Gbit/s72
      2023AMD7 nm CMOSDependent50/0.96-11.1 dBm@50 Gbit/s73
    Tools

    Get Citation

    Copy Citation Text

    Jintao Xue, Shenlei Bao, Chao Cheng, Xianglin Bu, Qian Liu, Liqun Wei, Yihao Yang, Wenfu Zhang, Binhao Wang. Advances in Integration of Co‑Packaged High‑Density Optical Interconnection Chips (Invited)[J]. Acta Optica Sinica, 2025, 45(17): 1720010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Jun. 15, 2025

    Accepted: Aug. 19, 2025

    Published Online: Sep. 3, 2025

    The Author Email: Binhao Wang (wangbinhao@opt.ac.cn)

    DOI:10.3788/AOS251285

    CSTR:32393.14.AOS251285

    Topics