Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 849(2025)

Application of Thermoelectric Cooling on Chip Thermal Management

LU Yao1、*, FAN Xinyue1, LUO Jie1, LIU Wenjing1, and ZHAO Lidong2
Author Affiliations
  • 1School of Microelectronics, Southern University of Science and Technology, Shenzhen 518000, Guangdong, China
  • 2School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • show less
    References(82)

    [1] [1] sSABER H H, HAJIAH A E, ALSHEHRI S A. Sustainable self-cooling framework for cooling computer chip hotspots using thermoelectric modules[J]. Sustainability, 2021, 13(22): 12522.

    [2] [2] LI C, LUO Y, LI W, et al. The on-chip thermoelectric cooler: advances, applications and challenges[J]. Chip, 2024, 3 (2): 100096.

    [3] [3] CHEN W Y, SHI X L, ZOU J, et al. Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization[J]. Mater Sci Eng R Rep, 2022, 151: 100700.

    [4] [4] EL-GENK M S, SABER H H. Composite spreader for cooling computer chip with non-uniform heat dissipation[J]. IEEE Trans Compon Packag Technol, 2008, 31(1): 165–172.

    [5] [5] ZHANG Q H, DENG K F, WILKENS L, et al. Micro-thermoelectric devices[J]. Nat Electron, 2022, 5(6): 333–347.

    [6] [6] PEDRAM M, NAZARIAN S. Thermal modeling, analysis, and management in VLSI circuits: Principles and methods[J]. Proc IEEE, 2006, 94(8): 1487–1501.

    [7] [7] SHARIFI S, ROSING T . Accurate direct and indirect on-chip temperature sensing for efficient dynamic thermal management[J]. IEEE Trans Comput Aided Des Integr Circuits Syst, 2010, 29(10): 1586–1599.

    [8] [8] SKADRON K, STAN M R, SANKARANARAYANAN K, et al. Temperature-aware microarchitecture: Modeling and implementation[J]. ACM Trans Archit Code Optim, 2004, 1(1): 94–125.

    [9] [9] KUPRAT J, VAN DER BROECK C H, ANDRESEN M, et al. Research on active thermal control: Actual status and future trends[J]. IEEE J Emerg Sel Top Power Electron, 2021, 9(6): 6494–6506.

    [10] [10] CHEN Z W, ZHANG X Y, ZHANG S X, et al. Demonstration of efficient Thomson cooler by electronic phase transition[J]. Nat Mater, 2025, 24: 34–38.

    [11] [11] SHI X L, SUN S, WU T, et al. Weavable thermoelectrics: Advances, controversies, and future developments[J]. Mater Futures, 2024, 3(1): 012103.

    [12] [12] DING J M, ZHAO W R, JIN W L, et al. Advanced thermoelectric materials for flexible cooling application[J]. Adv Funct Mater, 2021, 31(20): 2010695.

    [13] [13] ADAMS M J, VEROSKY M, ZEBARJADI M, et al. Active Peltier coolers based on correlated and magnon-drag metals[J]. Phys Rev Applied, 2019, 11(5): 054008.

    [14] [14] XIE H Y, ZHAO L D. Origin of off-centering effect and the influence on heat transport in thermoelectrics[J]. Mater Futures, 2024, 3(1): 013501.

    [15] [15] LIU Q L, LU Y D, ZHU H T, et al. Multiscale ordered architecture in bismuth telluride alloys for miniature thermoelectric coolers[J]. Sci Bull, 2024, 69(3): 295–298.

    [16] [16] REN C J, ZHU W, ZHOU J, et al. Electromigration reliability and activation energy of Bi2Te3 thermoelectric film[J]. 2022, 120(6): 062105.

    [17] [17] ZHU B, LIU X X, WANG Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials[J]. Energy Environ Sci, 2020, 13(7): 2106–2114.

    [18] [18] ZHUANG H L, HU H H, PEI J, et al. HighZTin p-type thermoelectric (Bi, Sb)2Te3 with built-in nanopores[J]. Energy Environ Sci, 2022, 15(5): 2039–2048.

    [19] [19] WE J H, KIM S J, KIM G S, et al. Improvement of thermoelectric properties of screen-printed Bi2Te3 thick film by optimization of the annealing process[J]. J Alloys Compd, 2013, 552: 107–110.

    [20] [20] SUN X W, YAN Y D, KANG M, et al. General strategy for developing thick-film micro-thermoelectric coolers from material fabrication to device integration[J]. Nat Commun, 2024, 15(1): 3870.

    [21] [21] DONG G Y, FENG J H, QIU G J, et al. Oriented Bi2Te3-based films enabled high performance planar thermoelectric cooling device for hot spot elimination[J]. Nat Commun, 2024, 15(1): 9695.

    [22] [22] KIM M Y, OH T S. Thermoelectric thin film device of cross-plane configuration processed by electrodeposition and flip-chip bonding[J]. Mater Trans, 2012, 53(12): 2160–2165.

    [23] [23] ZHANG Z W, WANG Y, DENG Y, et al. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film[J]. Solid State Commun, 2011, 151(21): 1520–1523.

    [24] [24] LU Y, ZHOU Y, WANG W, et al. Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance[J]. Nat Nanotechnol, 2023, 18(11): 1281–1288.

    [25] [25] QIN B C, KANATZIDIS M G, ZHAO L D. The development and impact of tin selenide on thermoelectrics[J]. Science, 2024, 386(6719): eadp2444.

    [26] [26] ZHAO L D, TAN G J, HAO S Q, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351(6269): 141–144.

    [27] [27] ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373–377.

    [28] [28] QIN B C, WANG D Y, LIU X X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments[J]. Science, 2021, 373(6554): 556–561.

    [29] [29] LIU D R, WANG D Y, HONG T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics[J]. Science, 2023, 380(6647): 841–846.

    [30] [30] PANG H M, QIN Y X, QIN B C, et al. Realizing ultrahigh thermoelectric performance in n-type PbSe through lattice planification and introducing liquid-like Cu ions[J]. Adv Funct Mater, 2024, 34(33): 2401716.

    [31] [31] QIN Y X, QIN B C, HONG T, et al. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3[J]. Science, 2024, 383(6688): 1204–1209.

    [32] [32] LIU S B, WEN Y, BAI S L, et al. Lattice plainification leads to high thermoelectric performance of P-type PbSe crystals[J]. Adv Mater, 2024, 36(25): 2401828.

    [33] [33] LIANG J S, QIU P F, ZHU Y, et al. Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system[J]. Research, 2020, 2020: 6591981.

    [34] [34] FANG C M, DE GROOT R A, WIEGERS G A. Ab initio band structure calculations of the low-temperature phases of Ag2Se, Ag2Te and Ag3AuSe2[J]. J Phys Chem Solids, 2002, 63(3): 457–464.

    [35] [35] CONN J B, TAYLOR R C. Thermoelectric and crystallographic properties of Ag2Se[J]. J Electrochem Soc, 1960, 107(12): 977.

    [36] [36] JOOD P, CHETTY R, OHTA M. Structural stability enables high thermoelectric performance in room temperature Ag2Se[J]. J Mater Chem A, 2020, 8(26): 13024–13037.

    [37] [37] HOU S H, LIU Y J, YIN L, et al. High performance wearable thermoelectric generators using Ag2Se films with large carrier mobility[J]. Nano Energy, 2021, 87: 106223.

    [38] [38] WANG H Y, LIU X F, ZHANG B, et al. General surfactant-free synthesis of binary silver chalcogenides with tuneable thermoelectric properties[J]. Chem Eng J, 2020, 393: 124763.

    [39] [39] JIANG C, DING Y F, CAI K F, et al. Ultrahigh performance of n-type Ag2Se films for flexible thermoelectric power generators[J]. ACS Appl Mater Interfaces, 2020, 12(8): 9646–9655.

    [40] [40] LI J J, LIU Y, WANG Z X, et al. Ultra-flexible self-supporting Ag2Se/nylon composite films for wearable thermoelectric devices[J]. Compos Part B Eng, 2023, 265: 110946.

    [41] [41] HU Q X, LIU W D, ZHANG L, et al. SWCNTs/Ag2Se film with superior bending resistance and enhanced thermoelectric performancevia in situcompositing[J]. Chem Eng J, 2023, 457: 141024.

    [42] [42] JIANG C, WEI P, DING Y F, et al. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting[J]. Nano Energy, 2021, 80: 105488.

    [43] [43] LU Y M, HAN X W, WEI P, et al. Nanoengineering approach toward ultrahigh power factor Ag2Se/polyvinylpyrrolidone composite film for flexible thermoelectric generator[J]. Chem Eng J, 2024, 485: 149793.

    [44] [44] HU Q X, LIU W D, ZHANG L, et al. Carrier separation boosts thermoelectric performance of flexiblen-type Ag2Se-based films[J]. Adv Energy Mater, 2024: 2401890.

    [45] [45] LU Y, QIU Y, CAI K, et al. Ultrahigh performance PEDOT/Ag2Se/ CuAgSe composite film for wearable thermoelectric power generators[J]. Mater Today Phys, 2020, 14: 100223.

    [46] [46] ZHOU K X, CHEN J K, ZHENG R K, et al. Non-epitaxial pulsed laser deposition of Ag2Se thermoelectric thin films for near-room temperature applications[J]. Ceram Int, 2016, 42(10): 12490–12495.

    [47] [47] PEREZ-TABORDA J A, CABALLERO-CALERO O, VERA- LONDONO L, et al. High thermoelectriczTin n-type silver selenide films at room temperature[J]. Adv Energy Mater, 2018, 8(8): 1702024.

    [48] [48] DING Y F, QIU Y, CAI K F, et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator[J]. Nat Commun, 2019, 10(1): 841.

    [49] [49] LU Y, QIU Y, CAI K F, et al. Correction: Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices[J]. Energy Environ Sci, 2020, 13(4): 1287–1288.

    [50] [50] LU Y, LI X, CAI K F, et al. Enhanced-performance PEDOT: PSS/Cu2Se-based composite films for wearable thermoelectric power generators[J]. ACS Appl Mater Interfaces, 2021, 13(1): 631–638.

    [51] [51] LU Y, DING Y F, QIU Y, et al. Good performance and flexible PEDOT: PSS/Cu2Se nanowire thermoelectric composite films[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12819–12829.

    [52] [52] LU Y, QIU Y, CAI K F, et al. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices[J]. Energy Environ Sci, 2020, 13(4): 1240–1249.

    [53] [53] QIN J, LU Y, LIU W J, et al. Modulating carrier transport by cross-dimensional compositing of Ag2Se/MXene for high-performance flexible thermoelectrics[J]. J Mater Chem A, 2024, 12(28): 17586–17595.

    [54] [54] MAO J, ZHU H T, DING Z W, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452): 495–498.

    [55] [55] LI A R, WANG Y C, LI Y Z, et al. High performance magnesium- based plastic semiconductors for flexible thermoelectrics[J]. Nat Commun, 2024, 15(1): 5108.

    [56] [56] YING P J, WILKENS L, REITH H, et al. A robust thermoelectric module based on MgAgSb/Mg3(Sb, Bi)2 with a conversion efficiency of 8.5% and a maximum cooling of 72 K[J]. Energy Environ Sci, 2022, 15(6): 2557–2566.

    [57] [57] LIU Z H, GAO W H, OSHIMA H, et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling[J]. Nat Commun, 2022, 13(1): 1120.

    [58] [58] LUO H F, LI X, WANG Y X, et al. High-throughput screening of room temperature active Peltier cooling materials in Heusler compounds[J]. NPJ Comput Mater, 2022, 8: 199.

    [59] [59] CHOWDHURY I, PRASHER R, LOFGREEN K, et al. On-chip cooling by superlattice-based thin-film thermoelectrics[J]. Nat Nanotechnol, 2009, 4(4): 235–238.

    [60] [60] NIMMAGADDA L A, SINHA S. Thermoelectric property requirements for on-chip cooling of device transients[J]. IEEE Trans Electron Devices, 2020, 67(9): 3716–3721.

    [61] [61] QIN B C, ZHAO L D. Progress and challenges for thermoelectric cooling: From materials and devices to manifold applications[J]. Mater Lab: doi: 10.54227/mlab.20230032.

    [62] [62] ZHANG W H, YANG J K, XU D Y. A high power density micro-thermoelectric generator fabricated by an integrated bottom-up approach[J]. J Microelectromech Syst, 2016, 25(4): 744–749.

    [63] [63] LI Y, BUDDHARAJU K, SINGH N, et al. Effect of electrical contact resistance in a silicon nanowire thermoelectric cooler and a design guideline for on-chip cooling applications[J]. J Electron Mater, 2013, 42(7): 1476–1481.

    [64] [64] TRUNG N H, VAN TOAN N, ONO T. Fabrication of-type flexible thermoelectric generators using an electrochemical deposition method for thermal energy harvesting applications at room temperature[J]. J Micromech Microeng, 2017, 27(12): 125006.

    [65] [65] LI S, LIU J L, DING L, et al. Active thermal management of high-power LED through chip on thermoelectric cooler[J]. IEEE Trans Electron Devices, 2021, 68(4): 1753–1756.

    [66] [66] ZHAO L H, LIU D, FENG J H, et al. Simultaneous optimization of cooling temperature difference and efficiency for multi-stage thermoelectric device[J]. Appl Energy, 2024, 373: 123878.

    [67] [67] GONG T R, LI L H, SHI M L, et al. A novel cascaded thin-film thermoelectric cooler for on-chip hotspot cooling[J]. Appl Therm Eng, 2023, 231: 120968.

    [68] [68] NIE X L, JIANG H L, SANG X H, et al. Numerical simulation and structural optimization of multi-stage planar thermoelectric coolers[J]. Phys Status Solidi A, 2020, 217(22): 2000248.

    [69] [69] SU Y, LU J B, HUANG B L. Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances[J]. Int J Heat Mass Transf, 2018, 117: 436–446.

    [70] [70] GONCALVES L M, ROCHA J G, COUTO C, et al. Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies[J]. J Micromech Microeng, 2007, 17(7): S168–S173.

    [71] [71] ZHANG B H, ZHU W, CAO L L, et al. Toward reduced interface contact resistance: Controllable surface energy of Sb2Te3 filmsviatuning the crystallization and orientation[J]. ACS Appl Mater Interfaces, 2022, 14(8): 10955–10965.

    [72] [72] SU Y, LU J B, VILLAROMAN D, et al. Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration[J]. Nano Energy, 2018, 48: 202–210.

    [73] [73] ELIBOL E A. Performance analysis of a refrigeration system integrated with a thermoelectric cooler and microchannels in terms of heat transfer using a hybrid nanofluid[J]. Appl Therm Eng, 2024, 250: 123465.

    [74] [74] RAZEEB K M, DALTON E, CROSS G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Mater Rev, 2018, 63(1): 1–21.

    [75] [75] CHEN W, BOTTOMS W R. Heterogeneous integration roadmap[C]// 2017 International Conference on Electronics Packaging (ICEP). Yamagata, Japan. IEEE, 2017: 302–305.

    [76] [76] GONG T R, WU Y J, LI J T, et al. A system level optimization of on-chip thermoelectric coolingviaTaguchi-Grey method[J]. Appl Therm Eng, 2022, 214: 118845.

    [77] [77] SIDDIQUE A R M, MURESAN H, MAJID S H, et al. An adjustable closed-loop liquid-based thermoelectric electronic cooling system for variable load thermal management[J]. Therm Sci Eng Prog, 2019, 10: 245–252.

    [78] [78] SUN X Q, ZHANG L F, LIAO S G. Performance of a thermoelectric cooling system integrated with a gravity-assisted heat pipe for cooling electronics[J]. Appl Therm Eng, 2017, 116: 433–444.

    [79] [79] CONG B, KONG Y M, YE Y X, et al. A combined solution of thermoelectric coolers and microchannels for multi-chip heat dissipation with precise temperature uniformity control[J]. Appl Therm Eng, 2023, 219: 119370.

    [80] [80] BELARBI A A, BERIACHE M, SIDIK N A C, et al. Experimental investigation on controlled cooling by coupling of thermoelectric and an air impinging jet for CPU[J]. Heat Transf, 2021, 50(3): 2242–2258.

    [81] [81] GUPTA P, TANWAR A, HE X Y, et al. Substrate integrated micro-thermoelectric coolers in glass substrate for next-generation photonic packages[J]. J Opt Microsyst, 2024, 4(1): 011006.

    [82] [82] Google LLC. Thermoelectric cooler (TEC) for spot cooling of 2.5D/3D IC packages[P]. US Patent, 10,504,816 B2. 2019–12–10.

    Tools

    Get Citation

    Copy Citation Text

    LU Yao, FAN Xinyue, LUO Jie, LIU Wenjing, ZHAO Lidong. Application of Thermoelectric Cooling on Chip Thermal Management[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 849

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 3, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: LU Yao (luy8@sustech.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240764

    Topics