Acta Optica Sinica, Volume. 43, Issue 8, 0822011(2023)

Precision Molding for Glass Optical Components

Guangyu Liu and Fengzhou Fang*
Author Affiliations
  • State Key Laboratory of Precision Measuring Technology & Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, China
  • show less
    References(176)

    [1] Wang Y Q, Liu W Q, Meng X X et al. Development of an immersive virtual reality head-mounted display with high performance[J]. Applied Optics, 55, 6969-6977(2016).

    [2] Chen C C A, Tang J C, Teng L M. Effects of mold design of aspheric projector lens for head up display[J]. Proceedings of SPIE, 7788, 778806(2010).

    [3] Cha D H, Park H S, Hwang Y et al. Experimental study of glass molding process and transcription characteristics of mold surface in molding of aspheric glass lenses[J]. Optical Review, 18, 241-246(2011).

    [4] McGuire J P,. Manufacturable mobile phone optics: higher order aspheres are not always better[J]. Proceedings of SPIE, 7652, 76521O(2010).

    [5] Hong Y G, Bowron J W. Novel optics for high-performance digital projection systems and monitors: current and future[J]. Proceedings of SPIE, 5002, 111-122(2003).

    [6] Ananthasayanam B. Computational modeling of precision molding of aspheric glass optics[D](2008).

    [7] Hirofu K, Zheng J L. Recent production technology of aspheric optical system[J]. Optical Technique, 17, 8-15(1991).

    [8] Xin Q M. Latest progress in technique for producing small aspherical element[J]. Optical Technique, 19, 2-5(1993).

    [9] Lee E S, Baek S Y. A study on optimum grinding factors for aspheric convex surface micro-lens using design of experiments[J]. International Journal of Machine Tools and Manufacture, 47, 509-520(2007).

    [10] Chen G H, Moore D T. Aspherical surface polishing with a ring polisher[J]. Applied Optics, 18, 559-562(1979).

    [11] Peng Y F, Shen B Y, Wang Z Z et al. Review on polishing technology of small-scale aspheric optics[J]. The International Journal of Advanced Manufacturing Technology, 115, 965-987(2021).

    [12] Walker D D, Brooks D, King A et al. The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces[J]. Optics Express, 11, 958-964(2003).

    [13] Nakano T. Manufacture of aspheric lens[J]. Instrument Technique and Sensor, 32-40(1972).

    [14] Churo T, Yukio S, Hiroda K et al. High precision molding of aspheric lens[J]. Optical Technique, 13, 7-9(1987).

    [15] Zhou T F, Yan J W, Masuda J et al. Investigation on shape transferability in ultraprecision glass molding press for microgrooves[J]. Precision Engineering, 35, 214-220(2011).

    [16] Gurganus D, Owen J D, Davies M A et al. Precision glass molding of freeform optics[J]. Proceedings of SPIE, 10742, 107420Q(2018).

    [17] Gurganus D, Novak S, Symmons A et al. Process evaluation and optimization for freeform precision glass molding[J]. Proceedings of SPIE, 11487, 1148710(2020).

    [18] Zhu X X. Viscoelastic testing and simulation for aspheric diffracted optical glass lens molding[D](2021).

    [19] Eader W H. Method of forming lenses[P].

    [20] Webb J H. Apparatus for molding lenses[P].

    [21] Paul G. Die for molding or casting optical lenses[P].

    [22] Tillyer E D. Method and apparatus for making lenses[P].

    [23] Luce R W. Molding apparatus[P].

    [24] Fumiyasu T, Hisataka S, Fusao N. Apparatus for forming optical glass lens[P].

    [25] Kichizo K. Press forming device for optical glass parts[P].

    [26] Yi A Y, Jain A. Compression molding of aspherical glass lenses: a combined experimental and numerical analysis[J]. Journal of the American Ceramic Society, 88, 579-586(2005).

    [27] Zhang L, Zhou L Y, Zhou W C et al. Design, fabrication and testing of a compact large-field-of-view infrared compound eye imaging system by precision glass molding[J]. Precision Engineering, 66, 87-98(2020).

    [28] Jain A, Yi A Y. Numerical simulation of compression molding of aspherical glass lenses[C], 712, 239-244(2004).

    [29] Jain A. Experimental study and numerical analysis of compression molding process for manufacturing precision aspherical glass lenses[D](2006).

    [30] Mosaddegh P, Ziegert J C. Friction measurement in precision glass molding: an experimental study[J]. Journal of Non-Crystalline Solids, 357, 3221-3225(2011).

    [31] Joshi D. Thermo-mechanical characterization of glass and its effect on predictions of stress state, birefringence and fracture in precision glass molded lenses[D](2014).

    [32] Gaylord S, Tincher B, Petit L et al. Viscosity properties of sodium borophosphate glasses[J]. Materials Research Bulletin, 44, 1031-1035(2009).

    [33] Ananthasayanam B, Joseph P F, Joshi D et al. Final shape of precision molded optics: part I: computational approach, material definitions and the effect of lens shape[J]. Journal of Thermal Stresses, 35, 550-578(2012).

    [34] Joshi D, Mosaddegh P, David Musgraves J et al. Thermo-mechanical characterization of glass at high temperature using the cylinder compression test. Part I: viscoelasticity, friction, and PPV[J]. Journal of Rheology, 57, 1367-1389(2013).

    [35] Zhou T F, Yan J W, Kuriyagawa T. Evaluating the viscoelastic properties of glass above transition temperature for numerical modeling of lens molding process[J]. Proceedings of SPIE, 6624, 662403(2008).

    [36] Yan J W, Zhou T F, Masuda J et al. Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis[J]. Precision Engineering, 33, 150-159(2009).

    [37] Zhou T F, Yan J W, Masuda J et al. Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process[J]. Journal of Materials Processing Technology, 209, 4484-4489(2009).

    [38] Dambon O, Wang F, Klocke F et al. Efficient mold manufacturing for precision glass molding[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27, 1445-1449(2009).

    [39] Liu G, Vu A T, Dambon O et al. Glass material modeling and its molding behavior[J]. MRS Advances, 2, 875-885(2017).

    [40] Klocke F, Dambon O, Georgiadis K. Comparison of nitride and noble metal coatings for precision glass molding tools[J]. Key Engineering Materials, 438, 9-16(2010).

    [41] Fischbach K D, Georgiadis K, Wang F et al. Investigation of the effects of process parameters on the glass-to-mold sticking force during precision glass molding[J]. Surface and Coatings Technology, 205, 312-319(2010).

    [42] Klocke F, Dambon O, Rohwerder M et al. Model of coating wear degradation in precision glass molding[J]. The International Journal of Advanced Manufacturing Technology, 87, 43-49(2016).

    [43] Sarhadi A, Hattel J H, Hansen H N. Three-dimensional modeling of glass lens molding[J]. International Journal of Applied Glass Science, 6, 182-195(2015).

    [44] Sarhadi A, Hattel J H, Hansen H N et al. Thermal modelling of the multi-stage heating system with variable boundary conditions in the wafer based precision glass moulding process[J]. Journal of Materials Processing Technology, 212, 1771-1779(2012).

    [45] Sarhadi A, Hattel J H, Hansen H N. Precision glass molding: validation of an FE model for thermo-mechanical simulation[J]. International Journal of Applied Glass Science, 5, 297-312(2014).

    [46] Sarhadi A, Hattel J H, Hansen H N. Evaluation of the viscoelastic behaviour and glass/mould interface friction coefficient in the wafer based precision glass moulding[J]. Journal of Materials Processing Technology, 214, 1427-1435(2014).

    [47] Hu Y. Investigation of several key technologies in precision glass molding[D](2017).

    [48] Zhou J. Study on several major issues in precision glass compression molding[D](2015).

    [49] Shi T Y. The structure & temperature process design of a hot-pressing furnace for precision glass lens molding[D](2014).

    [50] Zhao W. Research of refractive index variation and its correction in precision molded glass optics[D](2009).

    [51] Tao B. Study of residual stresses in compression molding of precision glass lenses[D](2013).

    [52] Yu J W, Luo H, Nguyen T V et al. Mechanism study on microformability of optical glass in ultrasonic-assisted molding process[J]. International Journal of Applied Glass Science, 10, 103-114(2019).

    [53] Yu J W, Luo H, Zhang Y Y et al. A comprehensive study on frictional dependence and predictive accuracy of viscoelastic model for optical glass using compression creep test[J]. Journal of the American Ceramic Society, 102, 6606-6617(2019).

    [54] Zhang Y Y, Yin S H, Liang R G et al. New testing and calculation method for determination viscoelasticity of optical glass[J]. Optics Express, 28, 626-640(2020).

    [55] Zhu K J. Experimental study and numerical simulation of glass molding process for optical glass lens[D](2013).

    [56] Luo H. Research on the mechanisms and key technologies in ultrasonic-assisted molding of microstructured glass elements[D](2020).

    [57] Zhou T F, Yan J W, Liang Z Q et al. Development of polycrystalline Ni-P mold by heat treatment for glass microgroove forming[J]. Precision Engineering, 39, 25-30(2015).

    [58] He Y P, Zhou T F, Dong X B et al. Diffraction manipulation of visible light with submicron structures for structural coloration fabrication[J]. Optics Express, 29, 9294-9311(2021).

    [59] Xie J Q. Study on the glass microstructure array molding and the interface micro friction[D](2018).

    [60] Zhou T F, He Y P, Wang T X et al. A review of the techniques for the mold manufacturing of micro/nanostructures for precision glass molding[J]. International Journal of Extreme Manufacturing, 3, 042002(2021).

    [61] Zhou T F, Zhu Z C, Liu X H et al. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics[J]. Micromachines, 9, 337(2018).

    [62] Li K S, Xu G, Huang X F et al. Temperature effect on the deformation and optical quality of moulded glass lenses in precision glass moulding[J]. International Journal of Applied Glass Science, 11, 185-194(2020).

    [63] Li K S, Xu G, Wen X B et al. High-temperature friction behavior of amorphous carbon coating in glass molding process[J]. Friction, 9, 1648-1659(2021).

    [64] Li K S. The basic research on numerical simulation and experiment of optical glass precision[D](2018).

    [65] Yan G P, Zhang Y, You K Y et al. Off-spindle-axis spiral grinding of aspheric microlens array mold inserts[J]. Optics Express, 27, 10873-10889(2019).

    [66] You K Y, Fang F Z. High effective laser assisted diamond turning of binderless tungsten carbide[J]. Journal of Materials Processing Technology, 302, 117505(2022).

    [67] You K Y, Fang F Z, Yan G P. Surface generation of tungsten carbide in laser-assisted diamond turning[J]. International Journal of Machine Tools and Manufacture, 168, 103770(2021).

    [68] You K Y, Liu G Y, Fang F Z. Investigation of surface integrity on laser pre-heat assisted diamond turning of binderless tungsten carbide[J]. Procedia CIRP, 108, 566-570(2022).

    [69] Zhang Y, Yan G P, Li Z X et al. Quality improvement of collimating lens produced by precision glass molding according to performance evaluation[J]. Optics Express, 27, 5033-5047(2019).

    [70] Zhang Y, Yan G P, You K Y et al. Study on α-Al2O3 anti-adhesion coating for molds in precision glass molding[J]. Surface and Coatings Technology, 391, 125720(2020).

    [71] Ni J J. Study on finite element simulation of glass molding process[D](2013).

    [72] Liu Y, Xing Y T, Yang C et al. Simulation of heat transfer in the progress of precision glass molding with a finite element method for chalcogenide glass[J]. Applied Optics, 58, 7311-7318(2019).

    [73] Liu Y, Xing Y T, Li C et al. Analysis of lens fracture in precision glass molding with the finite element method[J]. Applied Optics, 60, 8022-8030(2021).

    [74] Qi C W. Fabrication of test pieces of wedged chalcogenide glass prism with precision compression molding[D](2014).

    [75] Ma T, Yu J C, Wang Q H. Precision glass molding process of small aperture thin lens[J]. Infrared and Laser Engineering, 40, 87-90(2011).

    [76] Demkina L I, Demkina L I[M]. Physical and chemical principles of optical glass production. Li R S, Zhang F C, Transl, 33-51(1983).

         [M]. 光学玻璃生产的物理化学原理. 李荣生, 张福初, 译, 33-51(1983).

    [77] Wang L R. Low Tg glass for precision molding[J]. Glass & Enamel, 40, 29-32, 43(2012).

    [78] Yang Z, Wang Y F, Jin H M et al. Review of chalcogenide glass integrated photonic devices (Invited)[J]. Infrared and Laser Engineering, 51, 20220152(2022).

    [79] Cheng H. Study on the purification and molding technology of chalcogenide glass[D](2017).

    [80] Huang G Y, Yang R, Chen C et al. Research on precision molding process of Ge-Se-Te chalcogenide glass aspheric lens[J]. Glass, 48, 8-13(2021).

    [81] Wu H Q. Athermalized design of infrared optical system with large field-of-view based on chalcogenide glass[J]. Infrared, 42, 1-8(2021).

    [82] Wu Y. Multiscale mechanical simulation of contact interface during silicon carbide high temperature molding fused silica[D](2021).

    [83] Dukwen J, Friedrichs M, Liu G et al. Tribological wear analysis and numerical lifetime prediction of glassy carbon tools in fused silica molding[J]. Wear, 364/365, 144-153(2016).

    [84] Takahashi M, Sugimoto K, Maeda R. Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching[J]. Japanese Journal of Applied Physics, 44, 5600-5605(2005).

    [86] Yang T Q, Luo W B, Xu P et al[M]. Viscoelastic theory and application, 6-37, 231(2004).

    [87] Gutierrez-Lemini D[M]. Engineering viscoelasticity, 7-9(2014).

    [90] Asgar M A, Kim J, Haq M R et al. A comprehensive review of micro/nano precision glass molding molds and their fabrication methods[J]. Micromachines, 12, 812(2021).

    [91] Masuda J, Yan J W, Tashiro T et al. Microstructural and topographical changes of Ni-P plated moulds in glass lens pressing[J]. International Journal of Surface Science and Engineering, 3, 86-102(2009).

    [92] Yan J W, Oowada T, Zhou T F et al. Precision machining of microstructures on electroless-plated NiP surface for molding glass components[J]. Journal of Materials Processing Technology, 209, 4802-4808(2009).

    [93] Grunwald T, Wilhelm D P, Dambon O et al. Influence of glassy carbon surface finishing on its wear behavior during precision glass moulding of fused silica[J]. Materials, 12, 692(2019).

    [96] Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 113, 184-189(1991).

    [97] Suzuki H, Kodera S, Maekawa S et al. Study on precision grinding of micro aspherical surface: feasibility study of micro aspherical surface by inclined rotational grinding[J]. Journal of the Japan Society for Precision Engineering, 64, 619-623(1998).

    [98] Tohme Y E. Grinding aspheric and freeform micro-optical molds[J]. Proceedings of SPIE, 6462, 64620K(2007).

    [99] Brinksmeier E, Mutlugünes Y, Klocke F et al. Ultra-precision grinding[J]. CIRP Annals, 59, 652-671(2010).

    [100] Yan G P, You K Y, Fang F Z. Ultraprecision grinding of small-aperture concave aspheric mould insert with tilt axis method[J]. Procedia CIRP, 71, 505-510(2018).

    [101] Hwang Y, Kuriyagawa T, Lee S K. Wheel curve generation error of aspheric microgrinding in parallel grinding method[J]. International Journal of Machine Tools and Manufacture, 46, 1929-1933(2006).

    [102] Chen F J, Yin S H, Huang H et al. Fabrication of small aspheric moulds using single point inclined axis grinding[J]. Precision Engineering, 39, 107-115(2015).

    [103] Chen F J, Yin S H, Huang H et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 50, 480-486(2010).

    [104] Zhou T F, He Y P, Wang T X et al. Algorithm of micro-grooving and imaging processing for the generation of high-resolution structural color images[J]. Nanomanufacturing and Metrology, 3, 187-198(2020).

    [105] Shahinian H, Zaytsev D, Navare J et al. Micro laser assisted machining (µ-LAM) of precision optics[C], OT1A.5(2019).

    [106] Kang D, Navare J, Su Y et al. Observations on ductile laser assisted diamond turning of tungsten carbide[C], JT5A.11(2019).

    [108] Kode S K, Ellis J D, Mohammadi H. Laser assisted diamond turning of tungsten carbide and the material properties required to obtain optical surface finish suitable for lens molds[J]. Proceedings of SPIE, 12219, 1221906(2022).

    [109] You K Y, Fang F Z, Yan G P et al. Experimental investigation on laser assisted diamond turning of binderless tungsten carbide by in-process heating[J]. Micromachines, 11, 1104(2020).

    [110] Guo J, Zhang J G, Pan Y N et al. A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals[J]. International Journal of Extreme Manufacturing, 2, 012001(2020).

    [111] Suzuki N, Haritani M, Yang J et al. Elliptical vibration cutting of tungsten alloy molds for optical glass parts[J]. CIRP Annals, 56, 127-130(2007).

    [112] Zhang J G, Suzuki N, Wang Y L et al. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond[J]. Journal of Materials Processing Technology, 214, 2644-2659(2014).

    [113] Li Z J. Investigation on the processes and mechanisms of diamond cutting ferrous metals[D](2013).

    [114] Wang J S, Fang F Z, Yan G P et al. Study on diamond cutting of ion implanted tungsten carbide with and without ultrasonic vibration[J]. Nanomanufacturing and Metrology, 2, 177-185(2019).

    [115] Wang J S. Nanometric cutting mechanism and high-efficient machining technique of brittle materials[D](2019).

    [116] Prater K, Dukwen J, Scharf T et al. Micro-structuring of glassy carbon for precision glass molding of binary diffractive optical elements[J]. Optical Materials Express, 6, 3407-3416(2016).

    [117] Hans L E, Prater K, Kilchoer C et al. Wafer-level microstructuring of glassy carbon[J]. Proceedings of SPIE, 8974, 89740Y(2014).

    [118] He P, Li L, Yu J F et al. Graphene-coated Si mold for precision glass optics molding[J]. Optics Letters, 38, 2625-2628(2013).

    [119] Tamura T, Umetani M, Yamada K et al. Fabrication of antireflective subwavelength structure on spherical glass surface using imprinting process[J]. Applied Physics Express, 3, 112501(2010).

    [120] Zhou T F, Xu R Z, Ruan B S et al. Fabrication of microlens array on 6H-SiC mold by an integrated microcutting-etching process[J]. Precision Engineering, 54, 314-320(2018).

    [121] Albero J, Nieradko L, Gorecki C et al. Si moulds for glass and polymer microlenses replication[J]. Proceedings of SPIE, 6992, 69920A(2008).

    [122] Albero J, Nieradko L, Gorecki C et al. Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques[J]. Optics Express, 17, 6283-6292(2009).

    [123] Yasui M, Kaneko S, Takahashi M et al. Property variation of Ni-W electroformed mold for micro-press molding[J]. Japanese Journal of Applied Physics, 52, 11(2013).

    [124] Kasztelanic R, Kujawa I, Stepien R et al. Development of diffraction binary grating using hot embossing processing with electroformed nickel mold for broadband IR optics[J]. Infrared Physics & Technology, 107, 103293(2020).

    [125] Hasegawa T, Aizawa T, Inohara T et al. Hot mold stamping of optical plastics and glasses with transcription of super-hydrophobic surfaces[J]. Procedia Manufacturing, 15, 1437-1444(2018).

    [126] Wang L, Chen Q D, Cao X W et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Science & Applications, 6, e17112(2017).

    [127] Yan X Q, Wang H, Zhang J R et al. Combined process of small ball-end contact polishing and magnetorheological polishing for small aperture aspheric surface[J]. Surface Technology, 51, 274-287, 323(2022).

    [128] Lee H, Kim J, Kang H. Airbag tool polishing for aspherical glass lens molds[J]. Journal of Mechanical Science and Technology, 24, 153-158(2010).

    [129] Wang Y Q, Yin S H, Hu T. Ultra-precision finishing of optical mold by magnetorheological polishing using a cylindrical permanent magnet[J]. The International Journal of Advanced Manufacturing Technology, 97, 3583-3594(2018).

    [130] Yin S H, Gong S, He B W et al. Development on synergistic process and machine tools integrated inclined axis grinding and magnetorheological polishing for small aspheric surface[J]. Journal of Mechanical Engineering, 54, 205-211(2018).

    [131] Suzuki H, Hamada S, Okino T et al. Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing[J]. CIRP Annals, 59, 347-350(2010).

    [132] Guo J, Morita S Y, Hara M et al. Ultra-precision finishing of micro-aspheric mold using a magnetostrictive vibrating polisher[J]. CIRP Annals, 61, 371-374(2012).

    [133] Zhang P F, Li L G, Yang Z et al. Achieving sub-nanometer roughness on aspheric optical mold by non-contact polishing using damping-clothed tool[J]. Optics Express, 30, 28190-28206(2022).

    [134] Kaku T, Kuriyagawa T, Yoshihara N. Electrorheological fluid-assisted polishing of WC micro aspherical glass moulding dies[J]. International Journal of Manufacturing Technology and Management, 9, 109-119(2006).

    [135] Mishra V, Burada D R, Karar V et al. Investigations on flexible pad polishing for nano-finishing of freeform optics mold[J]. Journal of Micromanufacturing, 3, 99-112(2020).

    [136] Wang D Y, Chang C L, Ho W Y. Oxidation behavior of diamond-like carbon films[J]. Surface and Coatings Technology, 120/121, 138-144(1999).

    [137] Bernhardt F, Georgiadis K, Dolle L et al. Development of a ta-C diamond-like carbon (DLC) coating by magnetron sputtering for use in precision glass molding[J]. Materialwissenschaft und Werkstofftechnik, 44, 661-666(2013).

    [139] Lee W Y, Choi J H. Application of ta-C coating on WC mold to molded glass lens[J]. Tribology and Lubricants, 35, 106-113(2019).

    [140] Jang Y J, Kim J I, Kim W S et al. Thermal stability of Si/SiC/ta-C composite coatings and improvement of tribological properties through high-temperature annealing[J]. Scientific Reports, 12, 3536(2022).

    [141] Zhu X Y, Wei J J, Chen L X et al. Anti-sticking Re-Ir coating for glass molding process[J]. Thin Solid Films, 584, 305-309(2015).

    [142] Wei J J, Zhu X Y, Chen L X et al. High quality anti-sticking coating based on multilayer structure[J]. Surface and Coatings Technology, 362, 72-77(2019).

    [143] Peng Z R, Rohwerder M, Choi P P et al. Atomic diffusion induced degradation in bimetallic layer coated cemented tungsten carbide[J]. Corrosion Science, 120, 1-13(2017).

    [144] Peng Z R, Rohwerder M, Friedrichs M et al. Degradation mechanism of molds for precision glass molding[J]. Microscopy and Microanalysis, 23, 698-699(2017).

    [145] Friedrichs M, Peng Z R, Grunwald T et al. PtIr protective coating system for precision glass molding tools: design, evaluation and mechanism of degradation[J]. Surface and Coatings Technology, 385, 125378(2020).

    [146] Lin C H, Duh J G, Yau B S. Processing of chromium tungsten nitride hard coatings for glass molding[J]. Surface and Coatings Technology, 201, 1316-1322(2006).

    [147] Chen Y I, Cheng Y R, Chang L C et al. Chemical inertness of Cr-W-N coatings in glass molding[J]. Thin Solid Films, 593, 102-109(2015).

    [148] Huang X F, Xie Z W, Li K S et al. Microstructure, wear and oxidation resistance of CrWN glass molding coatings synthesized by plasma enhanced magnetron sputtering[J]. Vacuum, 174, 109206(2020).

    [149] Guo F, Huang X F, Xie Z W et al. Understanding the age-hardening mechanism of CrWN coating[J]. Thin Solid Films, 711, 138298(2020).

    [150] Feng C, Huang X F, Li K S et al. Tailoring growth structure and oxidation performance of CrWN glass molding coating via Pt and Ir doping[J]. Ceramics International, 48, 10574-10578(2022).

    [151] Moghaddas M A. Comparison of computational modeling of precision glass molding of infrared lenses[D](2014).

    [152] Zhou J, Li M J, Hu Y et al. Numerical evaluation on the curve deviation of the molded glass lens[J]. Journal of Manufacturing Science and Engineering, 136, 051004(2014).

    [153] Xie J Q, Zhou T F, Ruan B S et al. Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array[J]. Applied Optics, 56, 6622-6630(2017).

    [154] Su L J, Chen Y, Yi A Y et al. Refractive index variation in compression molding of precision glass optical components[J]. Applied Optics, 47, 1662-1667(2008).

    [155] Jain A, Yi A Y. Viscoelastic stress analysis of precision aspherical glass lens forming process using finite element method[J]. Precision Machining, 1, 1-4(2004).

    [156] Ananthasayanam B, Joshi D, Stairiker M et al. High temperature friction characterization for viscoelastic glass contacting a mold[J]. Journal of Non-Crystalline Solids, 385, 100-110(2014).

    [157] Chang S H, Lee Y M, Jung T S et al. Simulation of an aspheric glass lens forming behavior in progressive GMP process[C], 908, 1055-1060(2007).

    [158] Zhou J, He P, Yu J F et al. Investigation on the friction coefficient between graphene-coated silicon and glass using barrel compression test[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 33, 031213(2015).

    [159] Ananthasayanam B, Joseph P F, Joshi D et al. Final shape of precision molded optics: part II: validation and sensitivity to material properties and process parameters[J]. Journal of Thermal Stresses, 35, 614-636(2012).

    [160] Wang F, Chen Y, Klocke F et al. Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses[J]. Journal of Manufacturing Science and Engineering, 131, 011014(2009).

    [161] Sellier M, Breitbach C, Loch H et al. An iterative algorithm for optimal mould design in high-precision compression moulding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221, 25-33(2007).

    [162] Klocke F, Wang F, Wang Y et al. Development of a flexible and reliable numerical simulation for precision glass molding of complex glass optics[J]. Proceedings of SPIE, 8416, 841603(2012).

    [163] Su L J, Wang F, He P et al. An integrated solution for mold shape modification in precision glass molding to compensate refractive index change and geometric deviation[J]. Optics and Lasers in Engineering, 53, 98-103(2014).

    [167] Hung J C, Tsai Y P, Hung C. Development of a new apparatus for ultrasonic vibration-assisted glass hot embossing process[J]. Precision Engineering, 37, 222-227(2013).

    [168] Xie J Q, Zhou T F, Liu Y et al. Mechanism study on microgroove forming by ultrasonic vibration assisted hot pressing[J]. Precision Engineering, 46, 270-277(2016).

    [169] Yu J W, Luo H, Nguyen T V et al. Eigenfrequency characterization and tuning of Ti-6Al-4V ultrasonic horn at high temperatures for glass molding[J]. Ultrasonics, 101, 106002(2020).

    [170] Fang F Z, Zhang X D, Weckenmann A et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals, 62, 823-846(2013).

    [171] Kumar S, Tong Z, Jiang X Q. Advances in the design and manufacturing of novel freeform optics[J]. International Journal of Extreme Manufacturing, 4, 032004(2022).

    [172] Kumar M, Das M, Yu N. Surface roughness simulation during rotational-magnetorheological finishing of poppet valve profiles[J]. Nanomanufacturing and Metrology, 5, 259-273(2022).

    [173] Vu A T, Kreilkamp H, Dambon O et al. Nonisothermal glass molding for the cost-efficient production of precision freeform optics[J]. Optical Engineering, 55, 071207(2016).

    [174] Chenard F, Alvarez O, Yi A. Chalcogenide molded freeform optics for mid-infrared lasers[J]. Proceedings of SPIE, 10181, 101810U(2017).

    [175] Yan G P, Fang F Z. Fabrication of optical freeform molds using slow tool servo with wheel normal grinding[J]. CIRP Annals, 68, 341-344(2019).

    [176] Fang F Z. The three paradigms of manufacturing advancement[J]. Journal of Manufacturing Systems, 63, 504-505(2022).

    [177] Fang F Z. Atomic and close-to-atomic scale manufacturing: perspectives and measures[J]. International Journal of Extreme Manufacturing, 2, 030201(2020).

    [178] Wang J S, Fang F Z, Li L. Cutting of graphite at atomic and close-to-atomic scale using flexible enhanced molecular dynamics[J]. Nanomanufacturing and Metrology, 5, 240-249(2022).

    [179] Zhang L, Yi A Y, Yan J W. Flexible fabrication of Fresnel micro-lens array by off-spindle-axis diamond turning and precision glass molding[J]. Precision Engineering, 74, 186-194(2022).

    [180] Yu Q, Zhou T F, He Y P et al. Annealed high-phosphorus electroless Ni-P coatings for producing molds for precision glass molding[J]. Materials Chemistry and Physics, 262, 124297(2021).

    [181] Zhang Y Y, Liang R G, Spires O J et al. Precision glass molding of diffractive optical elements with high surface quality[J]. Optics Letters, 45, 6438-6441(2020).

    [182] Zhang L, Yan J W. Study on nano-graphitic carbon coating on Si mold insert for precision glass molding[J]. Surface and Coatings Technology, 448, 128893(2022).

    [183] Zhang L, Yan J W. Amorphous carbon coated silicon wafer as mold insert for precision glass molding[J]. Procedia CIRP, 108, 525-530(2022).

    [184] Hünten M, Hollstegge D, Klocke F. Wafer level glass molding[J]. Key Engineering Materials, 523/524, 1001-1005(2012).

    Tools

    Get Citation

    Copy Citation Text

    Guangyu Liu, Fengzhou Fang. Precision Molding for Glass Optical Components[J]. Acta Optica Sinica, 2023, 43(8): 0822011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Oct. 31, 2022

    Accepted: Feb. 26, 2023

    Published Online: Apr. 6, 2023

    The Author Email: Fang Fengzhou (fzfang@tju.edu.cn)

    DOI:10.3788/AOS221906

    Topics