Chinese Journal of Lasers, Volume. 48, Issue 15, 1502003(2021)
Recent Progress in Laser-Processed Graphene for Sensors and Actuators
[1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[2] Hwang E H, Adam S, Sarma S D. Carrier transport in two-dimensional graphene layers[J]. Physical Review Letters, 98, 186806(2007).
[3] Balandin A A, Ghosh S, Bao W Z et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 8, 902-907(2008).
[4] Li X S, Zhu Y W, Cai W W et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Letters, 9, 4359-4363(2009).
[5] Girit C O, Meyer J C, Erni R et al. Graphene at the edge: stability and dynamics[J]. Science, 323, 1705-1708(2009).
[6] Duch M C, Budinger G R S, Liang Y T et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung[J]. Nano Letters, 11, 5201-5207(2011).
[7] Sudibya H G, He Q Y, Zhang H et al. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films[J]. ACS Nano, 5, 1990-1994(2011).
[8] Chang H X, Wang G F, Yang A et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode[J]. Advanced Functional Materials, 20, 2893-2902(2010).
[9] Cao X H, Zeng Z Y, Shi W H et al. Three-dimensional graphene network composites for detection of hydrogen peroxide[J]. Small, 9, 1703-1707(2013).
[10] Chen S, Zhu J W, Wu X D et al. Graphene oxide-MnO2 nanocomposites for supercapacitors[J]. ACS Nano, 4, 2822-2830(2010).
[11] Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011).
[13] Pang S P, Englert J M, Tsao H N et al. Extrinsic corrugation-assisted mechanical exfoliation of monolayer graphene[J]. Advanced Materials, 22, 5374-5377(2010).
[14] Varchon F, Feng R, Hass J et al. Electronic structure of epitaxial graphene layers on SiC: effect of the substrate[J]. Physical Review Letters, 99, 126805(2007).
[15] Chen Z P, Ren W C, Gao L B et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 10, 424-428(2011).
[16] Shi Y, Xu B, Wu D et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 46, 100001(2019).
[18] Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics[J]. Advanced Materials, 22, 2392-2415(2010).
[19] Liu Z Y, Cao H Q, Xu F et al. Graphene nanoelectromechanical system and its integration with optical fiber[J]. Laser & Optoelectronics Progress, 56, 110006(2019).
[20] Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials[J]. Energy & Environmental Science, 4, 1113-1132(2011).
[22] Strong V, Dubin S, El-Kady M F et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices[J]. ACS Nano, 6, 1395-1403(2012).
[23] Qiao Y C, Wang Y F, Tian H et al. Multilayer graphene epidermal electronic skin[J]. ACS Nano, 12, 8839-8846(2018).
[24] Yuan Y J, Li X. Femtosecond laser processing of graphene and its application[J]. Laser & Optoelectronics Progress, 57, 111414(2020).
[25] Guo C Y, Wang D D, Mu C L. Progress on optical fiber sensors based on graphene/graphene oxide[J]. Laser & Optoelectronics Progress, 57, 150003(2020).
[26] Chen Z D, Li J C, Xiao S L et al. Laser reduced graphene oxide for thin film flexible electronic devices[J]. Laser & Optoelectronics Progress, 57, 111428(2020).
[27] Sun B, McCay R N, Goswami S et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges[J]. Advanced Materials, 30, e1804327(2018).
[28] Han B, Zhang Y L, Zhu L et al. Plasmonic-assisted graphene oxide artificial muscles[J]. Advanced Materials, 31, e1806386(2019).
[29] Ma J N, Mao J W, Han D D et al. Laser programmable patterning of RGO/GO janus paper for multiresponsive actuators[J]. Advanced Materials Technologies, 4, 1900554(2019).
[30] Wang W, Han B, Zhang Y et al. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect[J]. Advanced Functional Materials, 31, 2006179(2021).
[31] Zhang H Q, Sun L X, Yang Y Z et al. Graphene-based optical biosensor using functionalized magnetic nanoparticles[J]. Acta Optica Sinica, 40, 1117001(2020).
[32] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 3, 270-274(2008).
[33] Huang X, Li S Z, Wu S X et al. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped au nanowires with alternating hcp and fcc domains[J]. Advanced Materials, 24, 979-983(2012).
[34] Gao X F, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 114, 832-842(2010).
[38] Tian H, Li C, Mohammad M A et al. Graphene earphones: entertainment for both humans and animals[J]. ACS Nano, 8, 5883-5890(2014).
[39] Tao L Q, Tian H, Liu Y et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 8, 14579(2017).
[40] Cai J G, Lü C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment[J]. Journal of Materials Chemistry A, 4, 1671-1679(2016).
[41] Zhu L, Gao Y Y, Han B et al. Laser fabrication of graphene-based electrothermal actuators enabling predicable deformation[J]. Optics Letters, 44, 1363-1366(2019).
[42] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).
[44] Huang Y H, Zeng L, Liu C G et al. Laser direct writing of heteroatom (N and S)-doped graphene from a polybenzimidazole ink donor on polyethylene terephthalate polymer and glass substrates[J]. Small, 14, e1803143(2018).
[46] Duy L X, Peng Z W, Li Y L et al. Laser-induced graphene fibers[J]. Carbon, 126, 472-479(2018).
[47] Zhang Z C, Song M M, Hao J X et al. Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon, 127, 287-296(2018).
[48] Carvalho A F, Fernandes A J S, Leitão C et al. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide[J]. Advanced Functional Materials, 28, 1805271(2018).
[49] Ye R Q, Chyan Y, Zhang J B et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 29, 1702211(2017).
[50] Chyan Y, Ye R Q, Li Y L et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food[J]. ACS Nano, 12, 2176-2183(2018).
[51] Gil-Villalba A, Meyer R, Giust R et al. Single shot femtosecond laser nano-ablation of CVD monolayer graphene[J]. Scientific Reports, 8, 14601(2018).
[52] Mortazavi S, Mollabashi M, Shah S I. Micropatterning of CVD single layer graphene using KrF laser irradiation[J]. Applied Surface Science, 428, 94-97(2018).
[53] Yoo J H, In J B, Park J B et al. Graphene folds by femtosecond laser ablation[J]. Applied Physics Letters, 100, 233124(2012).
[55] Jung I, Dikin D, Park S et al. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets[J]. The Journal of Physical Chemistry C, 112, 20264-20268(2008).
[56] Stanford M G, Yang K, Chyan Y et al. Laser-induced graphene for flexible and embeddable gas sensors[J]. ACS Nano, 13, 3474-3482(2019).
[57] Zhu J X, Cho M, Li Y T et al. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene[J]. ACS Applied Materials & Interfaces, 11, 24386-24394(2019).
[58] Wu D Z, Peng Q Q, Wu S et al. A simple graphene NH3 gas sensor via laser direct writing[J]. Sensors, 18, 4405(2018).
[59] An J N, Le T S D, Huang Y et al. All-graphene-based highly flexible noncontact electronic skin[J]. ACS Applied Materials & Interfaces, 9, 44593-44601(2017).
[60] Tian H, Shu Y, Wang X F et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range[J]. Scientific Reports, 5, 8603(2015).
[61] Fenzl C, Nayak P, Hirsch T et al. Laser-scribed graphene electrodes for aptamer-based biosensing[J]. ACS Sensors, 2, 616-620(2017).
[62] Cardoso A R, Marques A C, Santos L et al. Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes[J]. Biosensors and Bioelectronics, 124/125, 167-175(2019).
[63] Hong Q, Yang L M, Ge L et al. Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing[J]. Analyst, 143, 3327-3334(2018).
[64] Xu G Y, Jarjes Z A, Wang H W et al. Detection of neurotransmitters by three-dimensional laser-scribed graphene grass electrodes[J]. ACS Applied Materials & Interfaces, 10, 42136-42145(2018).
[65] Xu G Y, Jarjes Z A, Desprez V et al. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene[J]. Biosensors and Bioelectronics, 107, 184-191(2018).
[66] Lin S Y, Feng W D, Miao X F et al. A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate[J]. Biosensors and Bioelectronics, 110, 89-96(2018).
[67] Xuan X, Kim J Y, Hui X et al. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor[J]. Biosensors and Bioelectronics, 120, 160-167(2018).
[68] Nair R R, Wu H A, Jayaram P N et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 335, 442-444(2012).
[69] Cheng H H, Liu J, Zhao Y et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie (International Ed. in English), 52, 10482-10486(2013).
[70] Jiang H B, Liu Y, Liu J et al. Moisture-responsive graphene actuators prepared by two-beam laser interference of graphene oxide paper[J]. Frontiers in Chemistry, 7, 464(2019).
[71] Han B, Zhang Y L, Chen Q D et al. Carbon-based photothermal actuators[J]. Advanced Functional Materials, 28, 1802235(2018).
[72] Kim J, Jeon J H, Kim H J et al. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes[J]. ACS Nano, 8, 2986-2997(2014).
[73] Ling Y, Pang W B, Li X P et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction[J]. Advanced Materials, 32, 1908475(2020).
Get Citation
Copy Citation Text
Yuqing Liu, Jiarui Zhang, Dongdong Han, Hongbo Sun. Recent Progress in Laser-Processed Graphene for Sensors and Actuators[J]. Chinese Journal of Lasers, 2021, 48(15): 1502003
Category: laser manufacturing
Received: Mar. 17, 2021
Accepted: May. 24, 2021
Published Online: Aug. 5, 2021
The Author Email: Hongbo Sun (hbsun@tsinghua.edu.cn)