Acta Optica Sinica, Volume. 43, Issue 3, 0314001(2023)

Research Progress of Long-Wave Infrared Lasers Based on Nonlinear Frequency Conversion

Zhenxu Bai1,2、*, Jia Gao1,2, Chen Zhao1,2,3, Bingzheng Yan1,2, Yaoyao Qi1,2, Jie Ding1,2, Yulei Wang1,2, and Lü Zhiwei1,2、**
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
  • show less
    References(112)

    [1] Bekman H H P T, van den Heuvel J C, van Putten F J M et al. Development of a mid-infrared laser for study of infrared countermeasures techniques[J]. Proceedings of SPIE, 5615, 27-38(2004).

    [2] Sijan A. Development of military lasers for optical countermeasures in the mid-IR[J]. Proceedings of SPIE, 7483, 748304(2009).

    [3] Gabrieli A, Wright R, Lucey P G et al. Characterization and initial field test of an 8-14 μm thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes[J]. Bulletin of Volcanology, 78, 73(2016).

    [4] Webber M E, Pushkarsky M B, Patel C K N. Optical detection of chemical warfare agents and toxic industrial chemicals: simulation[J]. Journal of Applied Physics, 97, 113101(2005).

    [5] Jha A. A review of visible, near-IR, and mid-IR transitions in rare-earth doped glass waveguides for remote sensing and LIDAR[J]. Proceedings of SPIE, 6409, 246-257(2006).

    [6] Quagliano J R, Stoutland P O, Petrin R R et al. Quantitative chemical identification of four gases in remote infrared (9-11 µm) differential absorption lidar experiments[J]. Applied Optics, 36, 1915-1927(1997).

    [7] Serebryakov V A, Boĭko É V, Petrishchev N N et al. Medical applications of mid-IR lasers. Problems and prospects[J]. Journal of Optical Technology, 77, 6-17(2010).

    [8] Serebryakov V S, Boĭko É V, Kalintsev A G et al. Mid-IR laser for high-precision surgery[J]. Journal of Optical Technology, 82, 781-788(2015).

    [9] Wang C C, Liu R K, Wang T Y et al. Applications of infrared semiconductor laser[J]. Laser Journal, 41, 1-10(2020).

    [10] Patel C K N. Continuous-wave laser action on vibrational-rotational transitions of CO2[J]. Physical Review, 136, A1187-A1193(1964).

    [11] Beaulieu A J. Transversely excited atmospheric pressure CO2 lasers[J]. Applied Physics Letters, 16, 504-505(1970).

    [12] Youmans D G. Phase locking of adjacent channel leaky waveguide CO2 lasers[J]. Applied Physics Letters, 44, 365-367(1984).

    [13] Allik T H, Chandra S, Rines D M et al. Tunable 7-12 µm optical parametric oscillator using a Cr, Er∶YSGG laser to pump CdSe and ZnGeP2 crystals[J]. Optics Letters, 22, 597-599(1997).

    [14] Yang F, Yao J Y, Xu H Y et al. Midinfrared optical parametric amplifier with 6.4-11 µm range based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 27, 1100-1103(2015).

    [15] Vitiello M S, Scalari G, Williams B et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 23, 5167-5182(2015).

    [16] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [17] Faist J, Gmachl C, Capasso F et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 70, 2670-2672(1997).

    [18] Beck M, Hofstetter D, Aellen T et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 295, 301-305(2002).

    [19] Troccoli M, Lyakh A, Fan J et al. Long-wave IR quantum cascade lasers for emission in the λ=8-12 μm spectral region[J]. Optical Materials Express, 3, 1546-1560(2013).

    [20] Deng K, Gao Z Y, Han L et al. Applications and progress of quantum cascade lasers[J]. Electro-Optic Technology Application, 36, 23-29, 35(2021).

    [21] Liu F Q, Zhang J C, Liu J Q et al. Progress in quantum cascade lasers[J]. Chinese Journal of Lasers, 47, 0701007(2020).

    [22] Herbst R L, Byer R L. Singly resonant CdSe infrared parametric oscillator[J]. Applied Physics Letters, 21, 189-191(1972).

    [23] Oudar J L, Kupecek P J, Chemla D S. Medium infrared tunable down conversion of a YAG-pumped infrared dye laser in gallium selenide[J]. Optics Communications, 29, 119-122(1979).

    [24] Ketteridge P, Budni P, Lee I et al. 8 micron ZGP OPO pumped at 2 microns[C], OP8(1996).

    [25] Levi O, Pinguet T J, Skauli T et al. Difference frequency generation of 8‑µm radiation in orientation-patterned GaAs[J]. Optics Letters, 27, 2091-2093(2002).

    [26] Maidment L, Schunemann P G, Reid D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator[J]. Optics Letters, 41, 4261-4264(2016).

    [27] Kostyukova N Y, Boyko A A, Badikov V et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 41, 3667-3670(2016).

    [28] Peng Y P, Jiang B X, Fan J T et al. Review of mid-infrared laser materials directly pumped by laser-diode[J]. Laser & Optoelectronics Progress, 52, 020001(2015).

    [29] Xu F, Pan Q K, Chen F et al. Development progress of Fe2+∶ZnSe lasers[J]. Chinese Optics, 14, 458-469(2021).

    [30] Chen Y, Liu G Y, Wang R X et al. Research progress of nonlinear crystal applied in mid-and long-wave infrared solid-state laser[J]. Journal of Synthetic Crystals, 49, 1379-1395(2020).

    [31] Yao J Y, Mei D J, Bai L et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic Chemistry, 49, 9212-9216(2010).

    [32] Peterson R D, Whelan D, Bliss D et al. Improved material quality and OPO performance in orientation-patterned GaAs[J]. Proceedings of SPIE, 7197, 719709(2009).

    [33] Wang J, Cheng H J, Gao Y Z. Research progress of quasi-phase matching materials for long-wave IR generation[J]. Journal of Synthetic Crystals, 49, 1397-1404, 1442(2020).

    [34] Vodopyanov K L, Voevodin V G. Type I and Ⅱ ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm[J]. Optics Communications, 117, 277-282(1995).

    [35] Zawilski K T, Schunemann P G, Setzler S D et al. Large aperture single crystal ZnGeP2 for high-energy applications[J]. Journal of Crystal Growth, 310, 1891-1896(2008).

    [36] Zelmon D E, Hanning E A, Schunemann P G. Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices[J]. Journal of the Optical Society of America B, 18, 1307-1310(2001).

    [37] Yelisseyev A P, Lobanov S I, Krinitsin P G et al. The optical properties of the nonlinear crystal BaGa4Se7[J]. Optical Materials, 99, 109564(2020).

    [38] Yao J Y, Yin W L, Feng K et al. Growth and characterization of BaGa4Se7 crystal[J]. Journal of Crystal Growth, 346, 1-4(2012).

    [39] Ni Y B, Wu H X, Mao M S et al. Growth and characterization of mid-far infrared optical material CdSe crystal[J]. Optical Materials Express, 8, 1796-1805(2018).

    [40] Yao B Q, Li G, Zhu G L et al. Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators[J]. Chinese Physics B, 21, 034213(2012).

    [41] Beasley J D. Thermal conductivities of some novel nonlinear optical materials[J]. Applied Optics, 33, 1000-1003(1994).

    [42] Finsterbusch K, Bayer A, TunableZacharias H. Tunable, narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B, 79, 457-462(2004).

    [43] Zhang H Z, Kang Z H, Jiang Y et al. SHG phase matching in GaSe and mixed GaSe1-xSx, x≤0.412, crystals at room temperature[J]. Optics Express, 16, 9951-9957(2008).

    [44] Chen C W, Hsu Y K, Huang J Y et al. Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal[J]. Optics Express, 14, 10636-10644(2006).

    [45] Isaenko L I, Yelisseyev A P. Recent studies of nonlinear chalcogenide crystals for the mid-IR[J]. Semiconductor Science and Technology, 31, 123001(2016).

    [46] Kieleck C, Hildenbrand A, Eichhorn M et al. OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm; Ho∶silica fiber laser and Ho∶YAG laser[J]. Proceedings of SPIE, 7836, 783607(2010).

    [47] Schunemann P G, Zawilski K T, Pomeranz L A et al. Advances in nonlinear optical crystals for mid-infrared coherent sources[J]. Journal of the Optical Society of America B, 33, D36-D43(2016).

    [48] Schunemann P G, Pomeranz L A, Magarrell D J. First OPO based on orientation-patterned gallium phosphide (OP-GaP)[C], SW3O.1(2015).

    [49] Devi K, Padhye A, Schunemann P G et al. Multimilliwatt, tunable, continuous-wave, mid-infrared generation across 4.6-4.7 μm based on orientation-patterned gallium phosphide[J]. Optics Letters, 43, 2284-2287(2018).

    [50] Bakkland A, Fonnum H, Lippert E et al. Long-wave infrared source with 45 mJ pulse energy based on nonlinear conversion in ZnGeP2[C], STu1Q.8(2016).

    [51] Yu K K, Liang Z Q, Yan X S. Experimental studies on beam quality-improving of 8 μm ZGP optical parametric oscillator[C], 34-37(2015).

    [52] Qian C P, Shen Y J, Dai T Y et al. High power far-infrared optical parametric oscillator with high beam quality[J]. Proceedings of SPIE, 10016, 100160G(2016).

    [53] Qian C P, Shen Y J, Yao B Q et al. High power far-infrared ZGP OPO laser[C], ATh3J.6(2016).

    [54] Li L J, Yang X N, Yang Y Q et al. A high-power, long-wavelength infrared ZnGeP2 OPO pumped by a Q-switched Tm, Ho: GdVO4 laser[J]. Journal of Russian Laser Research, 38, 305-310(2017).

    [55] Qian C P, Duan X M, Yao B Q et al. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 26, 30195-30201(2018).

    [56] Liu G Y, Chen Y, Yao B Q et al. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals[J]. Applied Physics B, 125, 233(2019).

    [57] Liu G Y, Chen Y, Yao B Q et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 µm[J]. Optics Letters, 45, 2347-2350(2020).

    [58] Wei L, Wu D C, Liu D et al. Long-wave infrared ZnGeP2 optical parametric oscillator pumped by Ho∶YLF laser[J]. Chinese Journal of Lasers, 48, 0101002(2021).

    [59] Qian C P, Yu T, Liu J et al. A high-energy, narrow-pulse-width, long-wave infrared laser based on ZGP crystal[J]. Crystals, 11, 656(2021).

    [60] Qian C P, Yu T, Liu J et al. 5.4 W, 9.4 ns pulse width, long-wave infrared ZGP OPO pumped by Ho∶YAG MOPA system[J]. IEEE Photonics Journal, 13, 1501008(2021).

    [61] Zhao B R, Chen Y, Yao B Q et al. High-efficiency, tunable 8-9 μm BaGa4Se7 optical parametric oscillator pumped at 2.1 μm[J]. Optical Materials Express, 8, 3332-3337(2018).

    [62] Kolker D B, Sherstov I V, Kostyukova N Y et al. Broadband tunable source of mid-IR laser radiation for photoacoustic spectroscopy[J]. Quantum Electronics, 49, 29-34(2019).

    [63] Hu S W, Wang L, Guo Y W et al. High-conversion-efficiency tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.79‑μm laser[J]. Optics Letters, 44, 2201-2203(2019).

    [64] Yang F, Yao J Y, Guo Y W et al. High-energy continuously tunable 8-14 μm picosecond coherent radiation generation from BGSe-OPA pumped by 1064 nm laser[J]. Optics & Laser Technology, 125, 106040(2020).

    [65] Xu D G, Zhang J X, He Y X et al. High-energy, tunable long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal[J]. Optics Letters, 45, 5287-5290(2020).

    [66] Zhang J W, Wang Q, Hao J J et al. Broadband, few-cycle mid-infrared continuum based on the intra-pulse difference frequency generation with BGSe crystals[J]. Optics Express, 28, 37903-37909(2020).

    [67] Yuan J H, Duan X M, Yao B Q et al. Tunable 10- to 11-μm CdSe optical parametric oscillator pumped by a 2.1‑μm Ho∶YAG laser[J]. Applied Physics B, 122, 202(2016).

    [68] Yuan J H, Chen Y, Duan X M et al. CdSe optical parametric oscillator operating at 12.07 µm with 170 mW output[J]. Optics & Laser Technology, 92, 1-4(2017).

    [69] Wang J, Yuan L G, Zhang Y W et al. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal[J]. Journal of Crystal Growth, 491, 16-19(2018).

    [70] Chen Y, Liu G Y, Yang C et al. 1 W, 10.1 µm, CdSe optical parametric oscillator with continuous-wave seed injection[J]. Optics Letters, 45, 2119-2122(2020).

    [71] Chen Y, Yang C, Liu G Y et al. 11 µm, high beam quality idler-resonant CdSe optical parametric oscillator with continuous-wave injection-seeded at 2.58 µm[J]. Optics Express, 28, 17056-17063(2020).

    [72] Yang K, Li J H, Gao Y Z et al. Watt-level long-wave infrared CdSe pulsed-nanosecond optical parametric oscillator[J]. Optics & Laser Technology, 145, 107491(2022).

    [73] Wei L, Li B, Chen G et al. Long-wave infrared CdSe optical parametric oscillator[J]. Chinese Journal of Lasers, 48, 2401004(2021).

    [74] Gaida C, Gebhardt M, Heuermann T et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 7, 94(2018).

    [75] Yan D X, Xu D G, Wang Y Y et al. High-repetition-rate, tunable and coherent mid-infrared source based on difference frequency generation from a dual-wavelength 2 µ m laser and GaSe crystal[J]. Laser Physics, 28, 126205(2018).

    [76] Liu K, Liang H K, Li W K et al. Microjoule sub-two-cycle mid-infrared intrapulse-DFG driven by 3 μm OPCPA[J]. IEEE Photonics Technology Letters, 31, 1741-1744(2019).

    [77] Liu K, Liang H K, Wang L F et al. Multi-microjoule GaSe-based midinfrared optical parametric amplifier with an ultrabroad idler spectrum covering 4.2-16 μm[J]. Optics Letters, 44, 1003-1006(2019).

    [78] Butler T P, Gerz D, Hofer C et al. Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region[J]. Optics Letters, 44, 1730-1733(2019).

    [79] Yoshioka K, Igarashi I, Yoshida S et al. Subcycle mid-infrared coherent transients at 4 MHz repetition rate applicable to light-wave-driven scanning tunneling microscopy[J]. Optics Letters, 44, 5350-5353(2019).

    [80] Yao B Q, Yang K, Mi S Y et al. Research progress of high-power Ho∶YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J]. Chinese Journal of Lasers, 49, 0101002(2022).

    [81] Wen Y, Wu C T, Yuan Z R et al. Research progress of far-infrared solid-state lasers[J]. Chinese Optics, 11, 889-900(2018).

    [82] Chen B H, Nagy T, Baum P. Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation[J]. Optics Letters, 43, 1742-1745(2018).

    [83] Isaenko L, Yelisseyev A, Lobanov S et al. Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR[J]. Crystal Research and Technology, 38, 379-387(2003).

    [84] Petrov V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals[J]. Progress in Quantum Electronics, 42, 1-106(2015).

    [85] Pupeza I, Sánchez D, Zhang J et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 9, 721-724(2015).

    [86] Morimoto T, Sono N, Miyamoto T et al. Generation of a carrier-envelope-phase-stable femtosecond pulse at 10 µm by direct down-conversion from a Ti∶sapphire laser pulse[J]. Applied Physics Express, 10, 122701(2017).

    [87] Chen B H, Wittmann E, Morimoto Y et al. Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS2[J]. Optics Express, 27, 21306-21318(2019).

    [88] Heiner Z, Wang L, Petrov V et al. Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1750 cm-1 spectral range utilizing a LiGaS2 optical parametric amplifier[J]. Optics Express, 27, 15289-15297(2019).

    [89] Qu S Z, Liang H K, Liu K et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2[J]. Optics Letters, 44, 2422-2425(2019).

    [90] Schunemann P G, Pomeranz L A, Setzler S D et al. CW mid-IR OPO based on OP-GaAs[C](2013).

    [91] Vodopyanov K L, Makasyuk I, Schunemann P G. Grating tunable 4-14 µm GaAs optical parametric oscillator pumped at 3 µm[J]. Optics Express, 22, 4131-4136(2014).

    [92] Clément Q, Melkonian J M, Dherbecourt J B et al. Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing[J]. Optics Letters, 40, 2676-2679(2015).

    [93] Wueppen J, Nyga S, Jungbluth B et al. 1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength[J]. Optics Letters, 41, 4225-4228(2016).

    [94] Gutty F, Grisard A, Larat C et al. 140 W peak power laser system tunable in the LWIR[J]. Optics Express, 25, 18897-18906(2017).

    [95] Boyko A A, Schunemann P G, Guha S et al. Optical parametric oscillator pumped at ~1 µm with intracavity mid-IR difference-frequency generation in OP-GaAs[J]. Optical Materials Express, 8, 549-554(2018).

    [96] Wang L, Chen W D, Schunemann P et al. Nanosecond optical parametric oscillator with midinfrared intracavity difference-frequency mixing in orientation-patterned GaAs[J]. Optics Letters, 46, 332-335(2021).

    [97] Maidment L, Kara O, Schunemann P G et al. Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide[J]. Applied Physics B, 124, 143(2018).

    [98] Schunemann P G, Johnson K, Farrell C et al. Continuous wavelength tuning from 3.9-12 µm from an optical parametric oscillator based on orientation-patterned GaP grown on GaAs[J]. Optical Materials Express, 11, 654-663(2021).

    [99] Wang Z Y, Wu H X. Research progress of nonlinear crystals for 8-12 μm long-wave IR generation[J]. Journal of Synthetic Crystals, 48, 34-46, 53(2019).

    [100] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).

    [101] Williams R J, Kitzler O, Bai Z X et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).

    [102] McKay A, Kitzler O, Mildren R P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser[J]. Laser & Photonics Reviews, 8, L37-L41(2014).

    [103] Bai Z X, Williams R J, Kitzler O et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement[J]. Optics Express, 26, 19797-19803(2018).

    [104] Bai Z X, Williams R J, Jasbeer H et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters, 43, 563-566(2018).

    [105] Lux O, Sarang S, Kitzler O et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 3, 876-881(2016).

    [106] Bai Z X, Chen H, Li Y Q et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared and Laser Engineering, 50, 20200098(2021).

    [107] Mildren R P, Rabeau J R[M]. Optical engineering of diamond(2013).

    [108] Williams R J, Nold J, Strecker M et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 9, 405-411(2015).

    [109] Antipov S, Sabella A, Williams R J et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 44, 2506-2509(2019).

    [110] Bai Z X, Yang X Z, Chen H et al. Research progress of high-power diamond laser technology[J]. Infrared and Laser Engineering, 49, 20201076(2020).

    [111] Bai Z X, Chen H, Ding J et al. High-power Brillouin frequency comb based on free-space optical cavity[J]. Chinese Journal of Lasers, 49, 0415001(2022).

    [112] Chen H, Bai Z X, Zhao C et al. Numerical simulation of long-wave infrared generation using an external cavity diamond Raman laser[J]. Frontiers in Physics, 9, 671559(2021).

    Tools

    Get Citation

    Copy Citation Text

    Zhenxu Bai, Jia Gao, Chen Zhao, Bingzheng Yan, Yaoyao Qi, Jie Ding, Yulei Wang, Lü Zhiwei. Research Progress of Long-Wave Infrared Lasers Based on Nonlinear Frequency Conversion[J]. Acta Optica Sinica, 2023, 43(3): 0314001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: May. 13, 2022

    Accepted: Aug. 12, 2022

    Published Online: Feb. 13, 2023

    The Author Email: Bai Zhenxu (baizhenxu@hotmail.com), Zhiwei Lü (zhiweilv@hebut.edu.cn)

    DOI:10.3788/AOS221126

    Topics