Acta Optica Sinica, Volume. 43, Issue 3, 0314001(2023)
Research Progress of Long-Wave Infrared Lasers Based on Nonlinear Frequency Conversion
[1] Bekman H H P T, van den Heuvel J C, van Putten F J M et al. Development of a mid-infrared laser for study of infrared countermeasures techniques[J]. Proceedings of SPIE, 5615, 27-38(2004).
[2] Sijan A. Development of military lasers for optical countermeasures in the mid-IR[J]. Proceedings of SPIE, 7483, 748304(2009).
[3] Gabrieli A, Wright R, Lucey P G et al. Characterization and initial field test of an 8-14 μm thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes[J]. Bulletin of Volcanology, 78, 73(2016).
[4] Webber M E, Pushkarsky M B, Patel C K N. Optical detection of chemical warfare agents and toxic industrial chemicals: simulation[J]. Journal of Applied Physics, 97, 113101(2005).
[5] Jha A. A review of visible, near-IR, and mid-IR transitions in rare-earth doped glass waveguides for remote sensing and LIDAR[J]. Proceedings of SPIE, 6409, 246-257(2006).
[6] Quagliano J R, Stoutland P O, Petrin R R et al. Quantitative chemical identification of four gases in remote infrared (9-11 µm) differential absorption lidar experiments[J]. Applied Optics, 36, 1915-1927(1997).
[7] Serebryakov V A, Boĭko É V, Petrishchev N N et al. Medical applications of mid-IR lasers. Problems and prospects[J]. Journal of Optical Technology, 77, 6-17(2010).
[8] Serebryakov V S, Boĭko É V, Kalintsev A G et al. Mid-IR laser for high-precision surgery[J]. Journal of Optical Technology, 82, 781-788(2015).
[9] Wang C C, Liu R K, Wang T Y et al. Applications of infrared semiconductor laser[J]. Laser Journal, 41, 1-10(2020).
[10] Patel C K N. Continuous-wave laser action on vibrational-rotational transitions of CO2[J]. Physical Review, 136, A1187-A1193(1964).
[11] Beaulieu A J. Transversely excited atmospheric pressure CO2 lasers[J]. Applied Physics Letters, 16, 504-505(1970).
[12] Youmans D G. Phase locking of adjacent channel leaky waveguide CO2 lasers[J]. Applied Physics Letters, 44, 365-367(1984).
[13] Allik T H, Chandra S, Rines D M et al. Tunable 7-12 µm optical parametric oscillator using a Cr, Er∶YSGG laser to pump CdSe and ZnGeP2 crystals[J]. Optics Letters, 22, 597-599(1997).
[14] Yang F, Yao J Y, Xu H Y et al. Midinfrared optical parametric amplifier with 6.4-11 µm range based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 27, 1100-1103(2015).
[15] Vitiello M S, Scalari G, Williams B et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 23, 5167-5182(2015).
[16] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).
[17] Faist J, Gmachl C, Capasso F et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 70, 2670-2672(1997).
[18] Beck M, Hofstetter D, Aellen T et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 295, 301-305(2002).
[19] Troccoli M, Lyakh A, Fan J et al. Long-wave IR quantum cascade lasers for emission in the λ=8-12 μm spectral region[J]. Optical Materials Express, 3, 1546-1560(2013).
[20] Deng K, Gao Z Y, Han L et al. Applications and progress of quantum cascade lasers[J]. Electro-Optic Technology Application, 36, 23-29, 35(2021).
[21] Liu F Q, Zhang J C, Liu J Q et al. Progress in quantum cascade lasers[J]. Chinese Journal of Lasers, 47, 0701007(2020).
[22] Herbst R L, Byer R L. Singly resonant CdSe infrared parametric oscillator[J]. Applied Physics Letters, 21, 189-191(1972).
[23] Oudar J L, Kupecek P J, Chemla D S. Medium infrared tunable down conversion of a YAG-pumped infrared dye laser in gallium selenide[J]. Optics Communications, 29, 119-122(1979).
[24] Ketteridge P, Budni P, Lee I et al. 8 micron ZGP OPO pumped at 2 microns[C], OP8(1996).
[25] Levi O, Pinguet T J, Skauli T et al. Difference frequency generation of 8‑µm radiation in orientation-patterned GaAs[J]. Optics Letters, 27, 2091-2093(2002).
[26] Maidment L, Schunemann P G, Reid D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator[J]. Optics Letters, 41, 4261-4264(2016).
[27] Kostyukova N Y, Boyko A A, Badikov V et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 41, 3667-3670(2016).
[28] Peng Y P, Jiang B X, Fan J T et al. Review of mid-infrared laser materials directly pumped by laser-diode[J]. Laser & Optoelectronics Progress, 52, 020001(2015).
[29] Xu F, Pan Q K, Chen F et al. Development progress of Fe2+∶ZnSe lasers[J]. Chinese Optics, 14, 458-469(2021).
[30] Chen Y, Liu G Y, Wang R X et al. Research progress of nonlinear crystal applied in mid-and long-wave infrared solid-state laser[J]. Journal of Synthetic Crystals, 49, 1379-1395(2020).
[31] Yao J Y, Mei D J, Bai L et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic Chemistry, 49, 9212-9216(2010).
[32] Peterson R D, Whelan D, Bliss D et al. Improved material quality and OPO performance in orientation-patterned GaAs[J]. Proceedings of SPIE, 7197, 719709(2009).
[33] Wang J, Cheng H J, Gao Y Z. Research progress of quasi-phase matching materials for long-wave IR generation[J]. Journal of Synthetic Crystals, 49, 1397-1404, 1442(2020).
[34] Vodopyanov K L, Voevodin V G. Type I and Ⅱ ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm[J]. Optics Communications, 117, 277-282(1995).
[35] Zawilski K T, Schunemann P G, Setzler S D et al. Large aperture single crystal ZnGeP2 for high-energy applications[J]. Journal of Crystal Growth, 310, 1891-1896(2008).
[36] Zelmon D E, Hanning E A, Schunemann P G. Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices[J]. Journal of the Optical Society of America B, 18, 1307-1310(2001).
[37] Yelisseyev A P, Lobanov S I, Krinitsin P G et al. The optical properties of the nonlinear crystal BaGa4Se7[J]. Optical Materials, 99, 109564(2020).
[38] Yao J Y, Yin W L, Feng K et al. Growth and characterization of BaGa4Se7 crystal[J]. Journal of Crystal Growth, 346, 1-4(2012).
[39] Ni Y B, Wu H X, Mao M S et al. Growth and characterization of mid-far infrared optical material CdSe crystal[J]. Optical Materials Express, 8, 1796-1805(2018).
[40] Yao B Q, Li G, Zhu G L et al. Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators[J]. Chinese Physics B, 21, 034213(2012).
[41] Beasley J D. Thermal conductivities of some novel nonlinear optical materials[J]. Applied Optics, 33, 1000-1003(1994).
[42] Finsterbusch K, Bayer A, TunableZacharias H. Tunable, narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B, 79, 457-462(2004).
[43] Zhang H Z, Kang Z H, Jiang Y et al. SHG phase matching in GaSe and mixed GaSe1-xSx, x≤0.412, crystals at room temperature[J]. Optics Express, 16, 9951-9957(2008).
[44] Chen C W, Hsu Y K, Huang J Y et al. Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal[J]. Optics Express, 14, 10636-10644(2006).
[45] Isaenko L I, Yelisseyev A P. Recent studies of nonlinear chalcogenide crystals for the mid-IR[J]. Semiconductor Science and Technology, 31, 123001(2016).
[46] Kieleck C, Hildenbrand A, Eichhorn M et al. OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm; Ho∶silica fiber laser and Ho∶YAG laser[J]. Proceedings of SPIE, 7836, 783607(2010).
[47] Schunemann P G, Zawilski K T, Pomeranz L A et al. Advances in nonlinear optical crystals for mid-infrared coherent sources[J]. Journal of the Optical Society of America B, 33, D36-D43(2016).
[48] Schunemann P G, Pomeranz L A, Magarrell D J. First OPO based on orientation-patterned gallium phosphide (OP-GaP)[C], SW3O.1(2015).
[49] Devi K, Padhye A, Schunemann P G et al. Multimilliwatt, tunable, continuous-wave, mid-infrared generation across 4.6-4.7 μm based on orientation-patterned gallium phosphide[J]. Optics Letters, 43, 2284-2287(2018).
[50] Bakkland A, Fonnum H, Lippert E et al. Long-wave infrared source with 45 mJ pulse energy based on nonlinear conversion in ZnGeP2[C], STu1Q.8(2016).
[51] Yu K K, Liang Z Q, Yan X S. Experimental studies on beam quality-improving of 8 μm ZGP optical parametric oscillator[C], 34-37(2015).
[52] Qian C P, Shen Y J, Dai T Y et al. High power far-infrared optical parametric oscillator with high beam quality[J]. Proceedings of SPIE, 10016, 100160G(2016).
[53] Qian C P, Shen Y J, Yao B Q et al. High power far-infrared ZGP OPO laser[C], ATh3J.6(2016).
[54] Li L J, Yang X N, Yang Y Q et al. A high-power, long-wavelength infrared ZnGeP2 OPO pumped by a Q-switched Tm, Ho: GdVO4 laser[J]. Journal of Russian Laser Research, 38, 305-310(2017).
[55] Qian C P, Duan X M, Yao B Q et al. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 26, 30195-30201(2018).
[56] Liu G Y, Chen Y, Yao B Q et al. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals[J]. Applied Physics B, 125, 233(2019).
[57] Liu G Y, Chen Y, Yao B Q et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 µm[J]. Optics Letters, 45, 2347-2350(2020).
[58] Wei L, Wu D C, Liu D et al. Long-wave infrared ZnGeP2 optical parametric oscillator pumped by Ho∶YLF laser[J]. Chinese Journal of Lasers, 48, 0101002(2021).
[59] Qian C P, Yu T, Liu J et al. A high-energy, narrow-pulse-width, long-wave infrared laser based on ZGP crystal[J]. Crystals, 11, 656(2021).
[60] Qian C P, Yu T, Liu J et al. 5.4 W, 9.4 ns pulse width, long-wave infrared ZGP OPO pumped by Ho∶YAG MOPA system[J]. IEEE Photonics Journal, 13, 1501008(2021).
[61] Zhao B R, Chen Y, Yao B Q et al. High-efficiency, tunable 8-9 μm BaGa4Se7 optical parametric oscillator pumped at 2.1 μm[J]. Optical Materials Express, 8, 3332-3337(2018).
[62] Kolker D B, Sherstov I V, Kostyukova N Y et al. Broadband tunable source of mid-IR laser radiation for photoacoustic spectroscopy[J]. Quantum Electronics, 49, 29-34(2019).
[63] Hu S W, Wang L, Guo Y W et al. High-conversion-efficiency tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.79‑μm laser[J]. Optics Letters, 44, 2201-2203(2019).
[64] Yang F, Yao J Y, Guo Y W et al. High-energy continuously tunable 8-14 μm picosecond coherent radiation generation from BGSe-OPA pumped by 1064 nm laser[J]. Optics & Laser Technology, 125, 106040(2020).
[65] Xu D G, Zhang J X, He Y X et al. High-energy, tunable long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal[J]. Optics Letters, 45, 5287-5290(2020).
[66] Zhang J W, Wang Q, Hao J J et al. Broadband, few-cycle mid-infrared continuum based on the intra-pulse difference frequency generation with BGSe crystals[J]. Optics Express, 28, 37903-37909(2020).
[67] Yuan J H, Duan X M, Yao B Q et al. Tunable 10- to 11-μm CdSe optical parametric oscillator pumped by a 2.1‑μm Ho∶YAG laser[J]. Applied Physics B, 122, 202(2016).
[68] Yuan J H, Chen Y, Duan X M et al. CdSe optical parametric oscillator operating at 12.07 µm with 170 mW output[J]. Optics & Laser Technology, 92, 1-4(2017).
[69] Wang J, Yuan L G, Zhang Y W et al. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal[J]. Journal of Crystal Growth, 491, 16-19(2018).
[70] Chen Y, Liu G Y, Yang C et al. 1 W, 10.1 µm, CdSe optical parametric oscillator with continuous-wave seed injection[J]. Optics Letters, 45, 2119-2122(2020).
[71] Chen Y, Yang C, Liu G Y et al. 11 µm, high beam quality idler-resonant CdSe optical parametric oscillator with continuous-wave injection-seeded at 2.58 µm[J]. Optics Express, 28, 17056-17063(2020).
[72] Yang K, Li J H, Gao Y Z et al. Watt-level long-wave infrared CdSe pulsed-nanosecond optical parametric oscillator[J]. Optics & Laser Technology, 145, 107491(2022).
[73] Wei L, Li B, Chen G et al. Long-wave infrared CdSe optical parametric oscillator[J]. Chinese Journal of Lasers, 48, 2401004(2021).
[74] Gaida C, Gebhardt M, Heuermann T et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 7, 94(2018).
[75] Yan D X, Xu D G, Wang Y Y et al. High-repetition-rate, tunable and coherent mid-infrared source based on difference frequency generation from a dual-wavelength 2 µ m laser and GaSe crystal[J]. Laser Physics, 28, 126205(2018).
[76] Liu K, Liang H K, Li W K et al. Microjoule sub-two-cycle mid-infrared intrapulse-DFG driven by 3 μm OPCPA[J]. IEEE Photonics Technology Letters, 31, 1741-1744(2019).
[77] Liu K, Liang H K, Wang L F et al. Multi-microjoule GaSe-based midinfrared optical parametric amplifier with an ultrabroad idler spectrum covering 4.2-16 μm[J]. Optics Letters, 44, 1003-1006(2019).
[78] Butler T P, Gerz D, Hofer C et al. Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region[J]. Optics Letters, 44, 1730-1733(2019).
[79] Yoshioka K, Igarashi I, Yoshida S et al. Subcycle mid-infrared coherent transients at 4 MHz repetition rate applicable to light-wave-driven scanning tunneling microscopy[J]. Optics Letters, 44, 5350-5353(2019).
[80] Yao B Q, Yang K, Mi S Y et al. Research progress of high-power Ho∶YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J]. Chinese Journal of Lasers, 49, 0101002(2022).
[81] Wen Y, Wu C T, Yuan Z R et al. Research progress of far-infrared solid-state lasers[J]. Chinese Optics, 11, 889-900(2018).
[82] Chen B H, Nagy T, Baum P. Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation[J]. Optics Letters, 43, 1742-1745(2018).
[83] Isaenko L, Yelisseyev A, Lobanov S et al. Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR[J]. Crystal Research and Technology, 38, 379-387(2003).
[84] Petrov V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals[J]. Progress in Quantum Electronics, 42, 1-106(2015).
[85] Pupeza I, Sánchez D, Zhang J et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 9, 721-724(2015).
[86] Morimoto T, Sono N, Miyamoto T et al. Generation of a carrier-envelope-phase-stable femtosecond pulse at 10 µm by direct down-conversion from a Ti∶sapphire laser pulse[J]. Applied Physics Express, 10, 122701(2017).
[87] Chen B H, Wittmann E, Morimoto Y et al. Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS2[J]. Optics Express, 27, 21306-21318(2019).
[88] Heiner Z, Wang L, Petrov V et al. Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1750 cm-1 spectral range utilizing a LiGaS2 optical parametric amplifier[J]. Optics Express, 27, 15289-15297(2019).
[89] Qu S Z, Liang H K, Liu K et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2[J]. Optics Letters, 44, 2422-2425(2019).
[90] Schunemann P G, Pomeranz L A, Setzler S D et al. CW mid-IR OPO based on OP-GaAs[C](2013).
[91] Vodopyanov K L, Makasyuk I, Schunemann P G. Grating tunable 4-14 µm GaAs optical parametric oscillator pumped at 3 µm[J]. Optics Express, 22, 4131-4136(2014).
[92] Clément Q, Melkonian J M, Dherbecourt J B et al. Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing[J]. Optics Letters, 40, 2676-2679(2015).
[93] Wueppen J, Nyga S, Jungbluth B et al. 1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength[J]. Optics Letters, 41, 4225-4228(2016).
[94] Gutty F, Grisard A, Larat C et al. 140 W peak power laser system tunable in the LWIR[J]. Optics Express, 25, 18897-18906(2017).
[95] Boyko A A, Schunemann P G, Guha S et al. Optical parametric oscillator pumped at ~1 µm with intracavity mid-IR difference-frequency generation in OP-GaAs[J]. Optical Materials Express, 8, 549-554(2018).
[96] Wang L, Chen W D, Schunemann P et al. Nanosecond optical parametric oscillator with midinfrared intracavity difference-frequency mixing in orientation-patterned GaAs[J]. Optics Letters, 46, 332-335(2021).
[97] Maidment L, Kara O, Schunemann P G et al. Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide[J]. Applied Physics B, 124, 143(2018).
[98] Schunemann P G, Johnson K, Farrell C et al. Continuous wavelength tuning from 3.9-12 µm from an optical parametric oscillator based on orientation-patterned GaP grown on GaAs[J]. Optical Materials Express, 11, 654-663(2021).
[99] Wang Z Y, Wu H X. Research progress of nonlinear crystals for 8-12 μm long-wave IR generation[J]. Journal of Synthetic Crystals, 48, 34-46, 53(2019).
[100] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).
[101] Williams R J, Kitzler O, Bai Z X et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).
[102] McKay A, Kitzler O, Mildren R P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser[J]. Laser & Photonics Reviews, 8, L37-L41(2014).
[103] Bai Z X, Williams R J, Kitzler O et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement[J]. Optics Express, 26, 19797-19803(2018).
[104] Bai Z X, Williams R J, Jasbeer H et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters, 43, 563-566(2018).
[105] Lux O, Sarang S, Kitzler O et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 3, 876-881(2016).
[106] Bai Z X, Chen H, Li Y Q et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared and Laser Engineering, 50, 20200098(2021).
[107] Mildren R P, Rabeau J R[M]. Optical engineering of diamond(2013).
[108] Williams R J, Nold J, Strecker M et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 9, 405-411(2015).
[109] Antipov S, Sabella A, Williams R J et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 44, 2506-2509(2019).
[110] Bai Z X, Yang X Z, Chen H et al. Research progress of high-power diamond laser technology[J]. Infrared and Laser Engineering, 49, 20201076(2020).
[111] Bai Z X, Chen H, Ding J et al. High-power Brillouin frequency comb based on free-space optical cavity[J]. Chinese Journal of Lasers, 49, 0415001(2022).
[112] Chen H, Bai Z X, Zhao C et al. Numerical simulation of long-wave infrared generation using an external cavity diamond Raman laser[J]. Frontiers in Physics, 9, 671559(2021).
Get Citation
Copy Citation Text
Zhenxu Bai, Jia Gao, Chen Zhao, Bingzheng Yan, Yaoyao Qi, Jie Ding, Yulei Wang, Lü Zhiwei. Research Progress of Long-Wave Infrared Lasers Based on Nonlinear Frequency Conversion[J]. Acta Optica Sinica, 2023, 43(3): 0314001
Category: Lasers and Laser Optics
Received: May. 13, 2022
Accepted: Aug. 12, 2022
Published Online: Feb. 13, 2023
The Author Email: Bai Zhenxu (baizhenxu@hotmail.com), Zhiwei Lü (zhiweilv@hebut.edu.cn)