Acta Optica Sinica, Volume. 43, Issue 3, 0314001(2023)

Research Progress of Long-Wave Infrared Lasers Based on Nonlinear Frequency Conversion

Zhenxu Bai1,2、*, Jia Gao1,2, Chen Zhao1,2,3, Bingzheng Yan1,2, Yaoyao Qi1,2, Jie Ding1,2, Yulei Wang1,2, and Lü Zhiwei1,2、**
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
  • show less
    Figures & Tables(16)
    Infrared laser atmospheric transmission spectrum and main absorbing particles
    Development of second-order nonlinear frequency conversion, CO2 lasers, and QCL[10-12,16-18,22-27]
    Schematic of typical second-order nonlinear frequency conversion processes. (a) OPG; (b) OPO; (c) DFG; (d) OPA
    ZGP-OPO long-wave infrared laser[56]
    Infrared tunable BGSe-OPO laser[62]
    Tunable CdSe-OPO long-wave infrared laser[70]
    High repetition frequency and broad spectrum GaSe-IPDFG long-wave infrared laser[78]
    LGS-OPA long-wave infrared laser[87]
    OP-GaAs-OPO long-wave infrared laser[93]
    Comparison of pulse energy of long-wave infrared laser based on various nonlinear crystals
    • Table 1. Optical properties of infrared nonlinear crystals

      View table

      Table 1. Optical properties of infrared nonlinear crystals

      CrystalNonlinear coefficient /(pm·V-1Transparency range /μmThermal conductivity /(W·m-1·K-1Damage threshold /(MW·cm-2
      ZnGeP234-36d14=750.7-123530
      BaGa4Se737-38d11=24.3,d13=20.40.4-180.74(along a),0.64(along b),0.56(along c557
      CdSe39-41d31=180.75-256.956
      GaSe42-44d22=560.6-2016.230
      LiGaS245d31=5.80.32-11.68>240
      OP-GaAs46-47d14=940.85-195538
      OP-GaP47-49d14=70.60.57-12110104
    • Table 2. Research progress of ZGP long-wave infrared lasers

      View table

      Table 2. Research progress of ZGP long-wave infrared lasers

      Yearλpump /μmOutput wavelength /μmRepetition rate /kHzPulse duration /nsAverage power /WStructureRef.
      20152.098128-OPO51
      20162.098.121365.04OPO52
      20162.098.320348.2OPO53
      20172.057.8-9.9a1019.51.71OPO54
      20182.18.32030.411.4OPA55
      20192.098.21021.512.6OPO/OPA56
      20202.099.2-11 a1019.63.5@9.8 µmOPO57
      20212.058.11027.13.2OPO58
      20212.18.218.13.15OPO59
      20212.18.23<105.48OPO60
    • Table 3. Research progress of BGSe long-wave infrared lasers

      View table

      Table 3. Research progress of BGSe long-wave infrared lasers

      Yearλpump /μmOutput wavelength /μmRepetition ratePulse durationAverage power or energyStructureRef.
      20161.062.7-17a10 Hz10 ns<4.5 mJOPO30
      20182.18-9a1 kHz16 ns314 mW@8.9 μmOPO61
      20191.052.6-10.4a100 Hzns level14 μJ@8 μmOPO62
      20192.793.9-9.5a10 Hz21 ns<3.5 mJOPO63
      20201.068-14a10 Hz22.3 ps230 μJ @9.5 μmOPA64
      20201.068-14a10 Hz10.1 ns1.05 μJ@11 μmOPO65
      20202.46-18b69 MHz42 ps<1.9 mWIPDFG66
    • Table 4. Research progress of CdSe and GaSe long-wave infrared lasers

      View table

      Table 4. Research progress of CdSe and GaSe long-wave infrared lasers

      CrystalYearλpump /μmOutput wavelength /μmRepetition ratePulse durationAverage power or energyStructureRef.
      CdSe20162.0910-11.1a500 Hz19 ns140 mW@10 μmOPO67
      20172.0910-12.07a1.2 kHz40 ns170 mW@12 μmOPO68
      20182.0510.25 kHzns level320 mWOPO69
      20202.099.9-10.7a1 kHz24.4 ns1.05 W@10.1 μmOPO70
      20202.0910.55-12a1 kHz21 ns802 mW@11 μmOPO71
      20212.0910.15/111 kHzns level1.03/1.18 WOPO72
      20212.0512.55 kHz24.4 ns0.1 mJOPO73
      GaSe20181.927.3-16.5b1.25 MHz<100 fs450 mWIPDFG74
      201829-16a10 kHz11 ns0.36 mW@9.6 μmDFG75
      201937-15b10 kHz65 fs1.06 μJIPDFG76
      20192.154.2-16b1 kHz19 fs3.4 μJOPA77
      201926-18b50 MHz43 fs0.5 WIPDFG78
      20190.65-1.05b3.7-120b4 MHz31 fs160 pJIPDFG79
    • Table 5. Research progress of LGS long-wave infrared lasers

      View table

      Table 5. Research progress of LGS long-wave infrared lasers

      Yearλpump /μm

      Output

      wavelength /μm

      Repetition ratePulse durationAverage power or energyStructureRef.
      20151.038-13b100 MHz66 fs103 mWIPDFG85
      20170.89.2-15b1 kHz73 fs0.8 μJIPDFG86
      20181.038-11b50 kHzfs level0.37 mWIPDFG82
      20191.035-11b50 kHz32 fs220 nJOPA87
      20191.035.7-10.5a100 kHz98 fs< 48 mWOPA88
      20191.03910 kHz142 fs140 mWOPCPA89
    • Table 6. Research progress of OP-GaAs and OP-GaP long-wave infrared lasers

      View table

      Table 6. Research progress of OP-GaAs and OP-GaP long-wave infrared lasers

      CrystalYearλpump /μmOutput wavelength /μmRepetition ratePulse durationAverage power or energyStructure

      Period

      length /μm

      Ref.
      OP-GaAs20142.99-3.15a4-14a2 kHz~20 ns<7 μJOPO15091
      20151.9410.3-10.9a100 Hz17 ns2 μJ@10.3 μmOPO72.692
      20161.9510.650 kHz100 ns812 mWOPO74.593
      20171.88-1.98a8-10a2 kHz50 ns140 Wb@8.5 μmOPA6694
      20181.057-9.2a3 kHz11.5 ns<10 mWDFG31.595
      20212.458.1535 kHzns level215 mWDFG-96
      OP-GaP20161.045-12c101 MHzfs level<55 mWOPO21.5-34.026
      20181.045-13a101 MHzfs level<105 mWOPO3497
      20211.043.9-12a100 MHzfs level60 mW@10.7 μmOPO2198
    Tools

    Get Citation

    Copy Citation Text

    Zhenxu Bai, Jia Gao, Chen Zhao, Bingzheng Yan, Yaoyao Qi, Jie Ding, Yulei Wang, Lü Zhiwei. Research Progress of Long-Wave Infrared Lasers Based on Nonlinear Frequency Conversion[J]. Acta Optica Sinica, 2023, 43(3): 0314001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: May. 13, 2022

    Accepted: Aug. 12, 2022

    Published Online: Feb. 13, 2023

    The Author Email: Bai Zhenxu (baizhenxu@hotmail.com), Zhiwei Lü (zhiweilv@hebut.edu.cn)

    DOI:10.3788/AOS221126

    Topics