NUCLEAR TECHNIQUES, Volume. 48, Issue 7, 070006(2025)

Research progress on environmental compatibility evaluation in liquid lead bismuth eutectic of stainless steels used in lead-cooled fast reactor

Jibo TAN1, Xinrui ZHANG1,2, Baoquan XUE1, Ziyu ZHANG1, and Xinqiang WU1、*
Author Affiliations
  • 1CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • 2School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
  • show less
    Figures & Tables(17)
    Solubility curves of metal elements in liquid lead bismuth eutectic (LBE)[1] (color online)
    Gibbs free energy-temperature diagram of oxides for steel exposed to liquid LBE (color online)
    Cross-section morphologies of typical oxide films on T91 steel under different oxygen concentrations after 1 000 h exposure in liquid LBE at 550 oC[13](a) Saturated oxygen, (b) 1.26×10-6%, (c) 1.41×10-8%, (d) 1.12×10-9%
    Cross section morphologies of 9Cr ferritic/martensitic steel after exposed to 10-6% oxygen-controlled LBE at 600 ℃[31](a) 1.0Si (1 000 h), (b) 0Si (2 000 h), (c) 0.7Si (2 000 h), (d) 1.0Si (2 000 h)
    Temperature dependent total elongation of T91 and SIMP steel tested in argon or LBE[37-38]
    Fatigue data of T91 steel in liquid LBE[45-48](a) Strain amplitude vs. fatigue life at 350 ℃, (b) Temperature vs. fatigue life, Strain rate vs. fatigue life at 350 ℃ (c) and 550 ℃ (d)
    (a) SEM-BSE image and EDS elemental distributions of the oxide scale on the 2 000 h exposure 316L specimen, (b, c) the corresponding BC and IPF maps at a specimen tilt of 70°[63]
    APT analysis of the dual-phase structure in inner oxide layer of Si-enhanced stainless steel after exposure to oxygen-saturated LBE for 1 000 h[70] (color online)(a) BSE image showing the location of APT samples, (b, c) BSE and SEM image of APT needle-like sample, (d) O, Ni, and Si atoms mappings, and (e) the proximity histogram across the interface of Fe-Cr spinel/(Fe, Ni)-rich phase based on an iso-concentration surface of about 22% (atomic percentage) Ni in Fig.(d)
    HAADF-STEM image and corresponding EDS elemental distributions of cross section in 14Ni steel after exposed in LBE (1.8 m∙s-1, 5×10-7%~5×10-6%) at 550 ℃ for 4 008 h[77] (color online)
    Correlation of fatigue lives of 316LN SS with strain amplitude in liquid LBE and in air at 400 ℃[86]
    The quasi-cleavage cracking fracture morphology of T91 steel in saturated oxygen liquid LBE at 350 ℃[46,59](a) Low-cycle fatigue, (b) Fatigue crack propagation
    (a, b) HAADF images of the segregation-induced ordered Pb/Bi-Fe superstructures and Pb-Bi clusters discontinuously distributed at the GB1 and GB2 at 350 ℃, (c) High magnification HAADF image at GB1, (d) Atomic super EDS mappings in Fig.(c)[59] (color online)
    STEM observation of the grain boundary and Pb-Bi precipitates ahead of the crack tip for 316LN AuSS fatigue crack propagation tested at 400 ℃ of liquid LBE[90] (color online) (a) HAADF images of the Pb-Bi precipitate at the grain boundary, (b, c) Interfacial cracking along twin boudaries, (d) Phase identification of the Pb-Bi cluster, (e, f) The Pb-Bi particle was embedded at twin boudaries
    • Table 1. Main parameters of lead-cooled fast reactor models[3]

      View table
      View in Article

      Table 1. Main parameters of lead-cooled fast reactor models[3]

      型号ModelELFRBREST-OD-300SVBR-100SSTARURANUS-40CLEAR-IPBWFR
      电功率Electrical power/ MW6003001004010150
      冷却剂Primary coolant铅Lead铅Lead铅铋Lead bismuth eutectic铅Lead铅铋Lead bismuth eutectic铅铋Lead bismuth eutectic铅铋Lead bismuth eutectic
      堆芯温度Core temperature / ℃400~550420~650340~490420~650305~441300~385310~619
      堆容器Reactor vessel

      奥氏体不锈

      钢Austenitic

      stainless steel

      奥氏体不锈

      Austenitic stainless steel

      奥氏体不锈钢

      Austenitic stainless steel

      包壳Fuel claddingT91, 涂层Coated铁马钢Ferritic martensitic steelSi增强铁马钢Si-enhanced ferritic martensitic steelT91, HT-9, 铁马钢Si-enhanced ferritic martensitic steel,含Al铁素体钢Al-containing ferritic steel

      含Al/Si高Cr钢High Cr steels with Al and Si,Fe-Al涂层

      Fe-Al coating, SiC

      寿命Core lifetime30 a50 000 h15~30 a20 a>10 a
    • Table 2. Thermodynamic data of oxides[6]

      View table
      View in Article

      Table 2. Thermodynamic data of oxides[6]

      序号No.ΔGθ=ΔHθ-TΔSθΔHθ/ kJ∙mol-1ΔSθ/ J∙mol-1∙K-1
      12Pb+O2=2PbO-434.6-197.4
      22Ni+O2=2NiO-481.16-168.92
      33/2Fe+O2=1/2Fe3O4-559.2-172.95
      41/2Ni+Fe+O2=1/2NiFe2O4-542.281-184.5
      51/2Ni+Cr+O2=1/2NiCr2O4-687.05-179.08
      61/2Fe+Cr+O2=1/2FeCr2O4-722.35-169.65
      74/3Cr+O2=2/3Cr2O3-759.8-182.8
      8Ti+O2=TiO2-944-185.3
      91/2Fe+Al+O2=1/2FeAl2O4-987.805-194.02
      104/3Al+O2=2/3Al2O3-1 117.13-209
      11Si+O2=SiO2-910.7-182.55
      12Fe+1/2Si+O2=1/2Fe2SiO4-740-169.3
      131/2Fe+Al+O2=1/2FeAl2O4-997.647-194
      141/2Ni+Al+O2=1/2NiAl2O4-954.948-199.288
    • Table 3. Compositions of typical Si-enhanced ferritic/martensitic steels

      View table
      View in Article

      Table 3. Compositions of typical Si-enhanced ferritic/martensitic steels

      Steel gradeFeCCrNiMnMoSiWNbVTaTiCuN
      Fe-12Cr-2Si[22]Bal.0.00512.10.0150.002 50.003 82.110.0040.003 60.0320.001
      12Cr-Si[23-24]Bal.0.14120.80.50.81.20.60.4
      EP-823-sh[25]Bal.0.1811.40.70.60.671.050.650.20.40.030.04
      EI-852[27]Bal.0.1312.850.220.521.661.90.034
      SIMP[28]Bal.0.210.540.0050.451.221.260.20.150.003
      9Cr-Si[29]Bal.0.1048.510.371.221.660.25
      1.4718[30]Bal.0.368.730.130.3350.023.3290.030.0180.010.010.042
    • Table 4. Compositions of typical Si-enhanced austenitic stainless steels and alumina forming-austenitic steels

      View table
      View in Article

      Table 4. Compositions of typical Si-enhanced austenitic stainless steels and alumina forming-austenitic steels

      Steel gradeFeCCrNiMnMoSiNbTiCuAl
      1.4571[67]Bal.0.0817.51222.210.55
      18Cr-20Ni-5Si[68]Bal.0.0117.5819.080.60.3564.82.14
      S30600[69]Bal.0.01518153.7
      S30815[69]Bal.0.0921111.6
      Fe-15Cr-9Ni-2Si[70]Bal.0.1115.229.030.612.560.92
      Fe-23Ni-15Cr-3Al[75-76]Bal.0.1115.0722.762.270.210.630.123.27
      Fe-14Ni-14Cr-2.5Al[77]Bal.0.114.1113.40.940.210.842.37
      Fe-14Cr-2Mn-20Ni-0.5Cu-3Al[78]Bal.0.14813.8619.9821.990.121.010.050.523.02
      Fe-14Cr-5Mn-12Ni-3Cu-2.5Al[78]Bal.0.20114.9112.034.970.110.110.590.053.062.52
    Tools

    Get Citation

    Copy Citation Text

    Jibo TAN, Xinrui ZHANG, Baoquan XUE, Ziyu ZHANG, Xinqiang WU. Research progress on environmental compatibility evaluation in liquid lead bismuth eutectic of stainless steels used in lead-cooled fast reactor[J]. NUCLEAR TECHNIQUES, 2025, 48(7): 070006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue on The First Academic Annual Conference of the Research Reactor and Innovative Reactor Association of Chinese Nuclear Society and Advanced Nuclear Power System Reactor Engineering

    Received: Apr. 19, 2025

    Accepted: --

    Published Online: Sep. 15, 2025

    The Author Email: Xinqiang WU (WUXinqiang)

    DOI:10.11889/j.0253-3219.2025.hjs.48.250172

    Topics