Laser & Optoelectronics Progress, Volume. 60, Issue 24, 2412007(2023)

Detection of Surface Defects in Lightweight Insulators Using Improved YOLOv5

Yu Guo*, Meiling Ma, and Dalin Li
Author Affiliations
  • College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    Figures & Tables(14)
    Improved YOLOv5 model
    ConvNeXt block structural diagram
    CA attention module
    Pruning process. (a) Before pruning; (b) after pruning
    Comparison diagrams before and after CA. (a) Original image; (b) before joining; (c) after joining
    Comparison before and after sparse training (a) Before sparse training; (b) after sparse training
    Comparison of different target detection algorithms. (a) Original image; (b) Faster R-CNN; (c) YOLOv3; (d) YOLOv5; (e) improved YOLOv5
    • Table 1. Software and hardware platform configuration parameters

      View table

      Table 1. Software and hardware platform configuration parameters

      EnvironmentConfigure
      GPUNVIDIA GeForce RTX3050
      CPUIntel Core i5-11400H@2.7GHz
      operating systemWindows 10
      frameworkPyTorch 1.9.0
      CUDAcuda 11.1
    • Table 2. Comparison of different backbone networks

      View table

      Table 2. Comparison of different backbone networks

      ModelRmAP@0.5 /%Model size /MBFPS
      YOLOv5s90.4314.198
      +Ghost88.7110.2108
      +C3TR87.4620.582
      +ConvNeXt93.2713.6105
    • Table 3. Comparison of different attention mechanisms

      View table

      Table 3. Comparison of different attention mechanisms

      MethodRmAP@0.5 /%Model size /MBFPS
      Baseline90.4314.198
      +SE90.3115.398
      +CBAM92.2613.8103
      +ECA91.7513.899
      +CA93.4813.2106
    • Table 4. Comparison of pruning rates

      View table

      Table 4. Comparison of pruning rates

      Pruning rate /%P /%R /%RmAP@0.5 /%Model size /MB
      4093.7190.1994.336.8
      5092.5691.7193.845.4
      6089.8285.9489.714.5
      7082.5979.2481.373.3
    • Table 5. Lightweight network comparison

      View table

      Table 5. Lightweight network comparison

      ModelRmAP@0.5 /%Model size /MBFPS
      YOLOv3-tiny84.3736.269
      YOLOv4-tiny86.9323.775
      YOLOX-nano89.7124.871
      Improved YOLO v593.845.4166
    • Table 6. Comparison of experimental results of different algorithms

      View table

      Table 6. Comparison of experimental results of different algorithms

      ModelP /%R /%RmAP@0.5 /%RmAP@0.5∶0.95 /%Model size /MBFPS
      SSD80.9776.4181.4558.39176.455
      Faster R-CNN88.1284.6988.0667.59230.818
      YOLOv385.6883.5887.6765.8267.962
      YOLOv589.5389.1890.4390.4314.198
      Improved YOLOv592.5691.7193.8473.615.4166
    • Table 7. Ablation experiment

      View table

      Table 7. Ablation experiment

      YOLOv5ConvNeXt blockCAPruneP /%R /%RmAP@0.5 /%FPS
      89.5389.1890.4398
      90.6590.4293.27105
      89.7990.2393.48101
      94.1292.8695.25118
      92.5691.7193.84166
    Tools

    Get Citation

    Copy Citation Text

    Yu Guo, Meiling Ma, Dalin Li. Detection of Surface Defects in Lightweight Insulators Using Improved YOLOv5[J]. Laser & Optoelectronics Progress, 2023, 60(24): 2412007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Apr. 6, 2023

    Accepted: May. 15, 2023

    Published Online: Dec. 8, 2023

    The Author Email: Yu Guo (1240366119@qq.com)

    DOI:10.3788/LOP231032

    Topics