Acta Optica Sinica, Volume. 44, Issue 6, 0600002(2024)
Hyperspectral Remote Sensing Technology of Far-Infrared Radiation and Its Application in Ice Cloud Retrievals (Invited)
[1] Naud C, Russell J E, Harries J E. Remote sensing of cirrus cloud properties in the far infrared[J]. Proceedings of SPIE, 4168, 30-38(2001).
[2] Yang P, Mlynczak M G, Wei H L et al. Spectral signature of ice clouds in the far-infrared region: single-scattering calculations and radiative sensitivity study[J]. Journal of Geophysical Research: Atmospheres, 108, 4569-4583(2003).
[3] Harries J, Carli B, Rizzi R et al. The far-infrared earth[J]. Reviews of Geophysics, 46, RG4004(2008).
[4] Palchetti L, Brindley H, Bantges R et al. FORUM: unique far-infrared satellite observations to better understand how earth radiates energy to space[J]. Bulletin of the American Meteorological Society, 101, E2030-E2046(2020).
[5] Brindley H E, Harries J E. The impact of far I.R. absorption on clear sky greenhouse forcing: sensitivity studies at high spectral resolution[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 60, 151-180(1998).
[6] Pan F, Huang X L. The spectral dimension of modeled relative humidity feedbacks in the CMIP5 experiments[J]. Journal of Climate, 31, 10021-10038(2018).
[7] L'Ecuyer T S, Drouin B J, Anheuser J et al. The polar radiant energy in the far infrared experiment: a new perspective on polar longwave energy exchanges[J]. Bulletin of the American Meteorological Society, 102, E1431-E1449(2021).
[8] Turner D D, Merrelli A, Vimont D et al. Impact of modifying the longwave water vapor continuum absorption model on community Earth system model simulations[J]. Journal of Geophysical Research: Atmospheres, 117, D016440(2012).
[9] Turner D D, Mlawer E J. The radiative heating in underexplored bands campaigns[J]. Bulletin of the American Meteorological Society, 91, 911-923(2010).
[10] Merrelli A, Turner D D. Comparing information content of upwelling far-infrared and midinfrared radiance spectra for clear atmosphere profiling[J]. Journal of Atmospheric and Oceanic Technology, 29, 510-526(2012).
[11] Maestri T, Arosio C, Rizzi R et al. Antarctic ice cloud identification and properties using downwelling spectral radiance from 100 to 1, 400 cm-1[J]. Journal of Geophysical Research: Atmospheres, 124, 4761-4781(2019).
[12] Turner D D, Ackerman S A, Baum B A et al. Cloud phase determination using ground-based AERI observations at SHEBA[J]. Journal of Applied Meteorology, 42, 701-715(2003).
[13] Libois Q, Blanchet J P. Added value of far-infrared radiometry for remote sensing of ice clouds[J]. Journal of Geophysical Research: Atmospheres, 122, 6541-6564(2017).
[14] Maestri T, Cossich W, Sbrolli I. Cloud identification and classification from high spectral resolution data in the far infrared and mid-infrared[J]. Atmospheric Measurement Techniques, 12, 3521-3540(2019).
[15] Saito M, Yang P, Huang X L et al. Spaceborne middle- and far-infrared observations improving nighttime ice cloud property retrievals[J]. Geophysical Research Letters, 47, e87491(2020).
[16] Di Natale G, Palchetti L, Bianchini G et al. The two-stream δ-Eddington approximation to simulate the far infrared Earth spectrum for the simultaneous atmospheric and cloud retrieval[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 246, 106927(2020).
[17] Persky M J. A review of spaceborne infrared Fourier transform spectrometers for remote sensing[J]. Review of Scientific Instruments, 66, 4763-4797(1995).
[18] Xie Y, Huang X L, Chen X H et al. Joint use of far-infrared and mid-infrared observation for sounding retrievals: learning from the past for upcoming far-infrared missions[J]. Earth and Space Science, 10, EA002684(2023).
[19] Sgheri L, Belotti C, Ben-Yami M et al. The FORUM end-to-end simulator project: architecture and results[J]. Atmospheric Measurement Techniques, 15, 573-604(2022).
[20] Goody R M[M]. Atmospheric radiation(1964).
[21] Qi L L, Wang X D, Ji W. Analysis on atmospheric transmittance characteristics of middle-far infrared spectrum in ocean area[J]. Laser & Optoelectronics Progress, 59, 0101002(2022).
[22] Goody R M, Yung Y L[M]. Atmospheric radiation: theoretical basis, 67-124(1996).
[23] Rathke C, Fischer J, Neshyba S et al. Improving IR cloud phase determination with 20 microns spectral observations[J]. Geophysical Research Letters, 29, 1209-1213(2002).
[24] Green P D, Newman S M, Beeby R J et al. Recent advances in measurement of the water vapour continuum in the far-infrared spectral region[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 370, 2637-2655(2012).
[25] IPCC [M]. Special report on the ocean and cryosphere in a changing climate, 755(2019).
[26] Warren S G. Optical constants of ice from the ultraviolet to the microwave[J]. Applied Optics, 23, 1206-1225(1984).
[27] Warren S G, Brandt R E. Optical constants of ice from the ultraviolet to the microwave: a revised compilation[J]. Journal of Geophysical Research: Atmospheres, 113, D14220(2008).
[28] Baum B A, Yang P, Heymsfield A J et al. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 123-139(2014).
[29] Peterson C A, Huang X L, Chen X H et al. Synergistic use of far- and mid-infrared spectral radiances for satellite-based detection of polar ice clouds over ocean[J]. Journal of Geophysical Research: Atmospheres, 127, JD035733(2022).
[30] Palchetti L, Di Natale G, Bianchini G. Remote sensing of cirrus cloud microphysical properties using spectral measurements over the full range of their thermal emission[J]. Journal of Geophysical Research: Atmospheres, 121, 10804-10819(2016).
[31] Serio C, Esposito F, Masiello G et al. Interferometer for ground-based observations of emitted spectral radiance from the troposphere: evaluation and retrieval performance[J]. Applied Optics, 47, 3909-3919(2008).
[32] Bhawar R, Bianchini G, Bozzo A et al. Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band[J]. Geophysical Research Letters, 35, GL032207(2008).
[33] Sussmann R, Reichert A, Rettinger M. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared: part 1: setup, uncertainty analysis, and assessment of far-infrared water vapor continuum[J]. Atmospheric Chemistry and Physics, 16, 11649-11669(2016).
[34] Palchetti L, Bianchini G, Pellegrini M et al. Radiometric performances of the Fourier transform spectrometer for the Radiation Explorer in the Far-Infrared (REFIR) space mission[J]. Proceedings of SPIE, 5570, 433-444(2004).
[35] Palchetti L, Bianchini G, Castagnoli F et al. Breadboard of a Fourier-transform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission[J]. Applied Optics, 44, 2870-2878(2005).
[36] Esposito F, Grieco G, Leone L et al. REFIR/BB initial observations in the water vapour rotational band: results from a field campaign[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 103, 524-535(2007).
[37] Carli B, Barbis A, Harries J E et al. Design of an efficient broadband far-infrared Fourier-transform spectrometer[J]. Applied Optics, 38, 3945-3950(1999).
[38] Bianchini G, Palchetti L, Carli B. A wide-band nadir-sounding spectroradiometer for the characterization of the Earths outgoing long-wave radiation[J]. Proceedings of SPIE, 6361, 63610A(2006).
[39] Palchetti L, Belotti C, Bianchini G et al. Technical note: first spectral measurement of the Earths upwelling emission using an uncooled wideband Fourier transform spectrometer[J]. Atmospheric Chemistry and Physics, 6, 5025-5030(2006).
[40] Bianchini G, Palchetti L. Technical note: REFIR-PAD level 1 data analysis and performance characterization[J]. Atmospheric Chemistry and Physics, 8, 3817-3826(2008).
[41] Bianchini G, Palchetti L, Muscari G et al. Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign[J]. Journal of Geophysical Research: Atmospheres, 116, D02310(2011).
[42] Maestri T, Rizzi R, Tosi E et al. Analysis of cirrus cloud spectral signatures in the far infrared[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 141, 49-64(2014).
[43] Rizzi R, Arosio C, Maestri T et al. One year of downwelling spectral radiance measurements from 100 to 1400 cm-1 at Dome Concordia: results in clear conditions[J]. Journal of Geophysical Research: Atmospheres, 121, 10937-10953(2016).
[44] Palchetti L, Barucci M, Belotti C et al. Observations of the downwelling far-infrared atmospheric emission at the Zugspitze observatory[J]. Earth System Science Data, 13, 4303-4312(2021).
[45] Belotti C, Barbara F, Barucci M et al. The Far-Infrared Radiation Mobile Observation System (FIRMOS) for spectral characterization of the atmospheric emission[J]. Atmospheric Measurement Techniques, 16, 2511-2529(2023).
[46] Canas T A, Murray J E, Harries J E. Tropospheric airborne Fourier transform spectrometer (TAFTS)[J]. Proceedings of SPIE, 3220, 91-102(1997).
[47] Warwick L, Brindley H, Di Roma A et al. Retrieval of tropospheric water vapor from airborne far-infrared measurements: a case study[J]. Journal of Geophysical Research: Atmospheres, 127, JD034229(2022).
[48] Bantges R J, Brindley H E, Murray J E et al. A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared[J]. Atmospheric Chemistry & Physics, 20, 12889-12903(2020).
[49] Bellisario C, Brindley H E, Murray J E et al. Retrievals of the far infrared surface emissivity over the Greenland Plateau using the tropospheric airborne Fourier transform spectrometer (TAFTS)[J]. Journal of Geophysical Research: Atmospheres, 122, 12152-12166(2017).
[50] Mlynczak M G, Johnson D G, Latvakoski H et al. First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument[J]. Geophysical Research Letters, 33, GL025114(2006).
[51] Mlynczak M G, Cageao R P, Mast J C et al. Observations of downwelling far-infrared emission at Table Mountain California made by the FIRST instrument[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 170, 90-105(2016).
[52] Ridolfi M, Del Bianco S, Di Roma A et al. FORUM earth explorer 9: characteristics of level 2 products and synergies with IASI-NG[J]. Remote Sensing, 12, 1496-1515(2020).
[53] Ben-Yami M, Oetjen H, Brindley H et al. Emissivity retrievals with FORUMs end-to-end simulator: challenges and recommendations[J]. Atmospheric Measurement Techniques, 15, 1755-1777(2022).
[54] Xie Y, Huang X L, Chen X H et al. Retrieval of surface spectral emissivity in polar regions based on the optimal estimation method[J]. Journal of Geophysical Research: Atmospheres, 127, JD035677(2022).
[55] Kahn B H, Drouin B J, L'Ecuyer T S. Assessment of sampling sufficiency for low-cost satellite missions: application to PREFIRE[J]. Journal of Atmospheric and Oceanic Technology, 37, 2283-2298(2020).
[56] Pang S L, Sun L, Du Y M et al. Cloud-detection algorithm for images obtained using the visual and infrared multispectral imager[J]. Laser & Optoelectronics Progress, 60, 2228003(2023).
[57] Shang H Z, Husi L T, Li M et al. Remote sensing of cloud properties based on visible-to-infrared channel observation from passive remote sensing satellites[J]. Acta Optica Sinica, 42, 0600003(2022).
[58] Key J R, Intrieri J M. Cloud particle phase determination with the AVHRR[J]. Journal of Applied Meteorology, 39, 1797-1804(2000).
[59] Magurno D, Cossich W, Maestri T et al. Cirrus cloud identification from airborne far-infrared and mid-infrared spectra[J]. Remote Sensing, 12, 2097(2020).
[60] Cossich W, Maestri T, Magurno D et al. Ice and mixed-phase cloud statistics on the Antarctic Plateau[J]. Atmospheric Chemistry and Physics, 21, 13811-13833(2021).
[61] Di Natale G, Turner D D, Bianchini G et al. Consistency test of precipitating ice cloud retrieval properties obtained from the observations of different instruments operating at Dome C (Antarctica)[J]. Atmospheric Measurement Techniques, 15, 7235-7258(2022).
[62] Di Natale G, Barucci M, Belotti C et al. Comparison of mid-latitude single- and mixed-phase cloud optical depth from co-located infrared spectrometer and backscatter lidar measurements[J]. Atmospheric Measurement Techniques, 14, 6749-6758(2021).
[63] Di Natale G, Bianchini G, Del Guasta M et al. Characterization of the far infrared properties and radiative forcing of Antarctic ice and water clouds exploiting the spectrometer-LiDAR synergy[J]. Remote Sensing, 12, 3574-3595(2020).
[64] Di Natale G, Palchetti L. Sensitivity studies toward the retrieval of ice crystal habit distributions inside cirrus clouds from upwelling far infrared spectral radiance observations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 282, 108120(2022).
Get Citation
Copy Citation Text
Lei Liu, Shulei Li, Shuai Hu, Qingwei Zeng. Hyperspectral Remote Sensing Technology of Far-Infrared Radiation and Its Application in Ice Cloud Retrievals (Invited)[J]. Acta Optica Sinica, 2024, 44(6): 0600002
Category: Reviews
Received: Oct. 25, 2023
Accepted: Dec. 20, 2023
Published Online: Mar. 19, 2024
The Author Email: Lei Liu (liulei17c@nudt.edu.cn), Shulei Li (ishulei@nudt.edu.cn)
CSTR:32393.14.AOS231697