Acta Optica Sinica, Volume. 44, Issue 6, 0600002(2024)

Hyperspectral Remote Sensing Technology of Far-Infrared Radiation and Its Application in Ice Cloud Retrievals (Invited)

Lei Liu1,2、*, Shulei Li1,2、**, Shuai Hu1,2, and Qingwei Zeng1,2
Author Affiliations
  • 1College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2High Impact Weather Key Laboratory of China Meteorological Administration, Changsha 410073, Hunan , China
  • show less
    Figures & Tables(11)
    Optical depth attributed to lines of main gas molecules throughout infrared band[3]. (a) H2O and CO2; (b) remaining key absorbers
    Real part (solid line) and imaginary part (dashed line) of refractive index of ice as functions of wavenumber in infrared band[1]
    Scattering properties of ice crystal particles and liquid water droplets in far-infrared and mid-infrared bands[28-29]. (a) Extinction efficiency; (b) absorption efficiency; (c) scattering efficiency; (d) single scattering albedo
    Optical schematic of REFIR-BB (M1-M5 represent plane mirror, P1-P3 are polarizing beam splitters, and RTMA and RTMB are rooftop mirrors for arms A and B, respectively)[37]
    Satellite ground tracks and footprints of FORUM and IASI-NG: FORUM FSI footprints (red), FEI footprints (yellow), and IASI-NG footprints (blue)[4]
    Probability of correctly identifying ice clouds using channels of different bands[29]
    Differences between upwelling radiances generated by using habit mixture (Mix) as for simulations and by using single habits, and comparison with FORUM noise and IASI-NG noise[64]. (a)-(c) Simulation results for mid-latitudes; (d)-(f) simulations for tropics; (g)-(i) simulations for polar scenarios
    • Table 1. Key parameters of REFIR-BB, REFIR-PAD, and FIRMOS

      View table

      Table 1. Key parameters of REFIR-BB, REFIR-PAD, and FIRMOS

      ParameterREFIR-BBREFIR-PADFIRMOS
      Instrument typeMartin-Puplett polarizing interferometer

      Mach-Zender type

      non-polarizing FTS

      Mach-Zender type

      non-polarizing FTS

      Detector type

      DLaTGS pyroelectric

      (room temperature)

      DLaTGS pyroelectric

      (room temperature)

      DLaTGS pyroelectric

      (room temperature)

      Beam splitter type

      2-μm-pitch-1-μm-wire grid upon

      1.5-μm-thick Mylar substrate

      Broadband Ge-coated Mylar

      (0.85 µm/2 µm)

      Ge-coated BoPET

      beam splitter

      Spectral bandwidth100-1100 cm-1100-1400 cm-1100-1000 cm-1
      Spectral resolution

      0.2 cm-1 (double-sided interferogram),

      0.1 cm-1 (single-sided interferogram)

      0.5 cm-1 (double-sided)

      (0.25 cm-1 max)

      0.25 cm-1
      Field of view60 mrad133 mrad22.4 mrad
      Weight60 kg55 kg80 kg
    • Table 2. Key parameters of TAFTS and FIRST

      View table

      Table 2. Key parameters of TAFTS and FIRST

      ParameterTAFTSFIRST
      Instrument typeMartin-Puplett polarizing interferometerMichelson interferometer liquid nitrogen,~180 K
      Detector type

      Ge∶Ga and Si∶Sb photo-conductors

      liquid Helium, 4 K

      37.5 mm×37.5 mm focal plane of 10×10 silicon bolometers

      liquid Helium,4.2 K

      Beam splitter typeMylar substrateBilayer thin-film:1.05-μm-Ge and 3.5-μm-polypropylene
      Spectral bandwidth /cm-1

      80-300 (Ge∶Ga),

      320-600 (Si∶Sb)

      100-1000
      Spectral resolution /cm-10.120.6
      Field of view /(°)±0.8±48
    • Table 3. Key parameters of FORUM and PREFIRE

      View table

      Table 3. Key parameters of FORUM and PREFIRE

      ItemFORUMPREFIRE
      InstrumentFSITIRS
      Instrument typeMach-Zender type non-polarizing FTSPushbroom spectrometer
      Detector typeDLaTGS pyroelectric(room temperature)64✕8 uncooled focal plane thermoelectric detector
      Spectral bandwidth100-1600 cm-14-54 μm
      Spectral resolution0.5 cm-10.86 μm
      Orbit altitude830 km470-650 km
      Footprint15 km12-15 km
      Orbit inclination98.7°82°~98°
    • Table 4. Comparison of cloud phase identification consistency between FTIR and other instruments[29]

      View table

      Table 4. Comparison of cloud phase identification consistency between FTIR and other instruments[29]

      InstrumentMWRMWR+radarLidar
      TIR only173113
      FIR+TIR667156
    Tools

    Get Citation

    Copy Citation Text

    Lei Liu, Shulei Li, Shuai Hu, Qingwei Zeng. Hyperspectral Remote Sensing Technology of Far-Infrared Radiation and Its Application in Ice Cloud Retrievals (Invited)[J]. Acta Optica Sinica, 2024, 44(6): 0600002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Oct. 25, 2023

    Accepted: Dec. 20, 2023

    Published Online: Mar. 19, 2024

    The Author Email: Lei Liu (liulei17c@nudt.edu.cn), Shulei Li (ishulei@nudt.edu.cn)

    DOI:10.3788/AOS231697

    CSTR:32393.14.AOS231697

    Topics