Chinese Journal of Lasers, Volume. 47, Issue 11, 1100001(2020)
Laser Powder Bed Fusion for Fabrication of Metal Orthopedic Implants
[1] Qin W, Zhang D. 2020—2026 global and Chinese customized orthopedic implant industry development status and investment prospect analysis report Beijing: Zhongzhilin Information Technology Co[R]. Ltd.(2020).
[2] Zhao Zhenyu, Qu A. Analysis of orthopedic implant market in China[R]. Beijing: Huaxia Cornerstone Industry Service Group(2020).
[3] Roseti L, Parisi V, Petretta M et al. Scaffolds for bone tissue engineering: state of the art and new perspectives[J]. Materials Science and Engineering C, 78, 1246-1262(2017).
[7] Sing S L, An J, Yeong W Y et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs[J]. Journal of Orthopaedic Research, 34, 369-385(2016).
[8] Brunello G, Sivolella S, Meneghello R et al. Powder-based 3D printing for bone tissue engineering[J]. Biotechnology Advances, 34, 740-753(2016).
[9] Zhu Y F, Wang L Q, Yang P et al. Research progress of β titanium alloy and its application prospects in orthopedics[J]. Orthopaedic Biomechanics Materials and Clinical Study, 8, 25-28(2011).
[10] Ren Y B[J]. Research and application status of medical high nitrogen nickel-free stainless steel Advanced Materials Industry, 2015, 44-49.
[11] Jia Z J, Xiu P, Li M et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses[J]. Biomaterials, 75, 203-222(2016).
[12] Zheng Y F, Gu X N, Witte F. Biodegradable metals[J]. Materials Science and Engineering R, 77, 1-34(2014).
[13] Liu Y, Zheng Y F, Chen X H et al. Fundamental theory of biodegradable metals: definition, criteria, and design[J]. Advanced Functional Materials, 29, 1805402(2019).
[14] Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials[J]. Acta Metallurgica Sinica, 53, 257-297(2017).
[15] Qin Y, Wen P, Guo H et al. Additive manufacturing of biodegradable metals: current research status and future perspectives[J]. Acta Biomaterialia, 98, 3-22(2019).
[17] DebRoy T, Wei H L, Zuback J S et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 92, 112-224(2018).
[19] Le G M, Li Q, Dong X F et al. Fabrication techniques of spherical-shaped metal powders suitable for additive manufacturing[J]. Rare Metal Materials and Engineering, 46, 1162-1168(2017).
[20] Miranda G, Araújo A, Bartolomeu F et al. Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications[J]. Materials & Design, 108, 488-493(2016).
[22] AlMangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/316L stainless steel composites: the roles of powder preparation and hot isostatic pressing post-treatment[J]. Powder Technology, 309, 37-48(2017).
[23] Yang Y W. Yuan F L, de Gao C, et al. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying[J]. Journal of the Mechanical Behavior of Biomedical Materials, 82, 51-60(2018).
[24] Qin Y, Wen P, Voshage M et al. Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: formation quality, microstructure and mechanical properties[J]. Materials & Design, 181, 107937(2019).
[26] Yang L, Wang F Y. Application of medical 3D printing porous tantalum in orthopedics[J]. Journal of Third Military Medical University, 41, 1859-1866(2019).
[27] Karunakaran R, Ortgies S, Tamayol A et al. Additive manufacturing of magnesium alloys[J]. Bioactive Materials, 5, 44-54(2020).
[28] Montani M, Demir A G, Mostaed E et al. Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing[J]. Rapid Prototyping Journal, 23, 514-523(2017).
[29] Wen P, Qin Y, Chen Y et al. Laser additive manufacturing of Zn porous scaffolds: shielding gas flow, surface quality and densification[J]. Journal of Materials Science& Technology, 35, 368-376(2019).
[30] Wang X J, Xu S Q, Zhou S W et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review[J]. Biomaterials, 83, 127-141(2016).
[31] Zadpoor A A. Bone tissue regeneration: the role of scaffold geometry[J]. Biomaterials Science, 3, 231-245(2015).
[33] Snis A, Lausmaa J, Thomsen P et al. Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human[J]. The Cientific World Journal, 11, 646417(2012).
[34] Cunningham R, Zhao C, Parab N et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging[J]. Science, 363, 849-852(2019).
[35] Khairallah S A, Anderson A, Rubenchik A M et al. Simulation of the main physical processes in remote laser penetration with large laser spot size[J]. AIP Advances, 5, 047120(2015).
[36] Demir A G, Previtali B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting[J]. Materials & Design, 119, 338-350(2017).
[37] Martin A A, Calta N P, Khairallah S A et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing[J]. Nature Communications, 10, 1987(2019).
[38] Mukherjee T, Zuback J S, De A et al. Printability of alloys for additive manufacturing[J]. Scientific Reports, 6, 19717(2016).
[39] Takamichi II Da[M]. Physical properties of liquid metal(2006).
[40] Wen P, Jauer L, Voshage M et al. Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants[J]. Journal of Materials Processing Technology, 258, 128-137(2018).
[41] Zhao X L, Li S J, Zhang M et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting[J]. Materials & Design, 95, 21-31(2016).
[42] Xu W, Brandt M, Sun S et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 85, 74-84(2015).
[43] Keist J S, Palmer T A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition[J]. Materials & Design, 106, 482-494(2016).
[44] Facchini L, Magalini E, Robotti P et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders[J]. Rapid Prototyping Journal, 16, 450-459(2010).
[45] Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 13, 196-203(2007).
[46] Schwab H, Palm F, Kühn U et al. Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting[J]. Materials & Design, 105, 75-80(2016).
[47] Thijs L, Verhaeghe F, Craeghs T et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 58, 3303-3312(2010).
[48] Herzog D, Seyda V, Wycisk E et al. Additive manufacturing of metals[J]. Acta Materialia, 117, 371-392(2016).
[49] Yap C Y, Chua C K, Dong Z L et al. Review of selective laser melting: materials and applications[J]. Applied Physics Reviews, 2, 041101(2015).
[51] Xillo G[M]. The world's first 3D printed total jaw reconstruction(2011).
[52] Zhou M, Cheng Y, Zhou X C et al. Biomedical titanium implants based on additive manufacture[J]. Scientia Sinica Technologica, 46, 1097-1115(2016).
[53] Elahinia M, Shayesteh Moghaddam N, Taheri Andani M et al. Fabrication of NiTi through additive manufacturing: a review[J]. Progress in Materials Science, 83, 630-663(2016).
[54] Liu J W, Sun Q D, Zhou C A et al. Achieving Ti6Al4V alloys with both high strength and ductility via selective laser melting[J]. Materials Science and Engineering A, 766, 138319(2019).
[55] Luo J P, Sun J F, Huang Y J et al. Low-modulus biomedical Ti-30Nb-5Ta-3Zr additively manufactured by selective laser melting and its biocompatibility[J]. Materials Science and Engineering C, 97, 275-284(2019).
[56] Attar H, Bermingham M J, Ehtemam-Haghighi S et al. Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application[J]. Materials Science and Engineering A, 760, 339-345(2019).
[57] Zhao D L, Han C J, Li J J et al. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting[J]. Materials Science and Engineering C, 111, 110784(2020).
[58] Wang D W, Zhou Y H, Shen J et al. Selective laser melting under the reactive atmosphere: a convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility[J]. Materials Science and Engineering A, 762, 138078(2019).
[59] Song C H, Zhang M K, Yang Y Q et al. Morphology and properties of CoCrMo parts fabricated by selective laser melting[J]. Materials Science and Engineering A, 713, 206-213(2018).
[60] Lu Y J, Wu S Q, Gan Y L et al. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application[J]. Materials Science and Engineering C, 49, 517-525(2015).
[62] Boes J, Röttger A, Becker L et al. Processing of gas-nitrided AISI 316L steel powder by laser powder bed fusion-microstructure and properties[J]. Additive Manufacturing, 30, 100836(2019).
[63] Wen P, Voshage M, Jauer L et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: processing, formation quality and mechanical properties[J]. Materials & Design, 155, 36-45(2018).
[65] Gangireddy S, Gwalani B, Liu K M et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy[J]. Additive Manufacturing, 26, 53-64(2019).
[66] Wei K W, Zeng X Y, Wang Z M et al. Selective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property[J]. Materials Science and Engineering A, 756, 226-236(2019).
[67] Li Y, Pavanram P, Zhou J et al. Additively manufactured biodegradable porous zinc[J]. Acta Biomaterialia, 101, 609-623(2020).
[69] Baufeld B. Biest O V D, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties[J]. Materials & Design, 31, S106-S111(2010).
[70] Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science and Engineering A, 616, 1-11(2014).
[71] Carter D R, Hayes W C. The compressive behavior of bone as a two-phase porous structure[J]. The Journal of Bone & Joint Surgery, 59, 954-962(1977).
[74] Hrabe N W, Heinl P, Flinn B et al. Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V)[J]. Journal of Biomedical Materials Research Part B, 99B, 313-320(2011).
[75] Amin Yavari S. Wauthle R, van der Stok J, et al. Fatigue behavior of porous biomaterials manufactured using selective laser melting[J]. Materials Science and Engineering C, 33, 4849-4858(2013).
[76] Ahmadi S M, Hedayati R, Li Y et al. Fatigue performance of additively manufactured meta-biomaterials: the effects of topology and material type[J]. Acta Biomaterialia, 65, 292-304(2018).
[77] Amin Yavari S, Ahmadi S M, Wauthle R et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 43, 91-100(2015).
[78] Ahmadi S M, Kumar R, Borisov E V et al. From microstructural design to surface engineering: a tailored approach for improving fatigue life of additively manufactured meta-biomaterials[J]. Acta Biomaterialia, 83, 153-166(2019).
[82] Wauthle R, van der Stok J, Amin Yavari S et al. Additively manufactured porous tantalum implants[J]. Acta Biomaterialia, 14, 217-225(2015).
[83] Thijs L. Montero Sistiaga M L, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum[J]. Acta Materialia, 61, 4657-4668(2013).
[85] Zhao D W, Witte F, Lu F Q et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective[J]. Biomaterials, 112, 287-302(2017).
[86] Zhang Y F, Xu J, Ruan Y C et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nature Medicine, 22, 1160(2016).
[87] Li Y, Zhou J, Pavanram P et al. Additively manufactured biodegradable porous magnesium[J]. Acta Biomaterialia, 67, 378-392(2018).
[88] Pawlak A, Chlebus E. Process parameter optimization of laser micrometallurgy of AZ31 alloy[J]. Interdisciplinary Journal of Engineering Sciences, 3, 10-15(2015).
[89] Gieseke M, Tandon R, Kiesow T et al. 2020-06-01]. https:∥www.researchgate.net/publication/304398182_Selektives_Laserstrahlschmelzen_von_ElektronR_MAP_43_Magnesiumpulver_Selective_Laser_Melting_of_ElektronR_MAP_43_Magnesium_. Powder.(2016).
[90] Lucas J, Bastian J, Maximilian V et al. Selective laser melting of magnesium alloys[J]. European Cells & Materials, 30, 1(2015).
[91] Yang Y W, Wu P, Lin X et al. System development, formability quality and microstructure evolution of selective laser-melted magnesium[J]. Virtual and Physical Prototyping, 11, 173-181(2016).
[92] Wang L N, Meng Y, Liu L J et al. Research progress on biodegradable zinc-based biomaterials[J]. Acta Metallurgica Sinica, 53, 1317-1322(2017).
[93] Li G N, Yang H T, Zheng Y F et al. Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility[J]. Acta Biomaterialia, 97, 23-45(2019).
[94] Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review[J]. Acta Biomaterialia, 87, 1-40(2019).
[96] Demir A G, Monguzzi L, Previtali B. Selective laser melting of pure Zn with high density for biodegradable implant manufacturing[J]. Additive Manufacturing, 15, 20-28(2017).
[97] Grasso M, Demir A G, Previtali B et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. Robotics and Computer-Integrated Manufacturing, 49, 229-239(2018).
[98] Wei K W, Wang Z M, Zeng X Y. Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metallurgica Sinica, 52, 184-190(2016).
[99] Zumdick N A, Jauer L, Kersting L C et al. Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43[J]. Materials Characterization, 147, 384-397(2019).
[100] Wei K W, Wang Z M, Zeng X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Materials Letters, 156, 187-190(2015).
[101] Klassen A, Forster V E, Körner C. A multi-component evaporation model for beam melting processes[J]. Modelling and Simulation in Materials Science and Engineering, 25, 025003(2017).
[102] Ladewig A, Schlick G, Fisser M et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process[J]. Additive Manufacturing, 10, 1-9(2016).
[104] Chen Y, Wen P, Voshage M et al. Laser additive manufacturing of Zn metal parts for biodegradable implants: effect of gas flow on evaporation and formation quality[J]. Journal of Laser Applications, 31, 022304(2019).
[105] Bär F, Berger L, Jauer L et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis[J]. Acta Biomaterialia, 98, 36-49(2019).
[106] Kubásek J, Vojtěch D, Jablonská E et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J]. Materials Science and Engineering C, 58, 24-35(2016).
[108] Li Y, Lietaert K, Li W et al. Corrosion fatigue behavior of additively manufactured biodegradable porous iron[J]. Corrosion Science, 156, 106-116(2019).
[109] Li Y, Jahr H, Zhang X Y et al. Biodegradation-affected fatigue behavior of additively manufactured porous magnesium[J]. Additive Manufacturing, 28, 299-311(2019).
[110] Guo M, Li X. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications[J]. Materials Science and Engineering C, 58, 1177-1181(2016).
[112] Lin T C, Cao C, Sokoluk M et al[J]. Aluminum with dispersed nanoparticles by laser additive manufacturing Nature Communications, 10, 4124.
Get Citation
Copy Citation Text
Yin Bangzhao, Qin Yu, Wen Peng, Zheng Yufeng, Tian Yun. Laser Powder Bed Fusion for Fabrication of Metal Orthopedic Implants[J]. Chinese Journal of Lasers, 2020, 47(11): 1100001
Category: reviews
Received: Jun. 1, 2020
Accepted: --
Published Online: Nov. 2, 2020
The Author Email: