Chinese Journal of Lasers, Volume. 47, Issue 11, 1100001(2020)

Laser Powder Bed Fusion for Fabrication of Metal Orthopedic Implants

Yin Bangzhao1,2, Qin Yu1,2, Wen Peng1,2, Zheng Yufeng3, and Tian Yun4
Author Affiliations
  • 1The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
  • 2Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 3Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
  • 4Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
  • show less
    Figures & Tables(8)
    SEM images showing metal powers prepared by gas atomization method. (a) Ti6Al4V alloy[22]; (b) CoCrMo alloy[23]; (c) 316L stainless steel[24]
    Orthopedics implants manufactured by L-PBF. (a) Ti6Al4V acetabular cup[25]; (b) tantalum knee joint implant[26]; (c) WE43 jaw implant[27]; (d) pure zinc hip joint implant[29]
    Influence of laser energy input on densification[37-45]
    Tensile properties of medical metals manufactured by L-PBF[20-21,51-67]
    Metal orthopedic implants manufactured by L-PBF[15]
    • Table 1. Thermal physical parameters of common medical metals[36]

      View table

      Table 1. Thermal physical parameters of common medical metals[36]

      ParameterValue
      ZnMgFeTiTa
      Crystal structurehcphcpbcc/fcchcp/bccbcc
      Density (20 ℃) /(g·cm-3)7.141.747.8744.516.65
      Melt point (at 101325 Pa) /℃419.5650153816602996
      Boil point (at 101325 Pa) /℃9071091286232875425
      Heat conductivity (20 ℃) /(W·m-1·K-1)11315880
      Heat capacity (20 ℃) /(J·kg-1·K-1)3821360444
      Surface tension (melting) /(mN·m-1)782559183515882150
      Viscosity (melting) /(mPa·s)3.851.256.934.54
      OxidationLowHighLowMidMid
    • Table 2. Mechanical properties of non-biodegradable metals built by L-PBF

      View table

      Table 2. Mechanical properties of non-biodegradable metals built by L-PBF

      MaterialDensification /%Tensilestrength /MPaElongation /%Hardness /HVElasticitymodulus /GPaReference
      CP-Ti99.575719.5224105[56]
      Ti6Al4V99.4117011364120[54]
      Ti-25Nb9974819.926483.5[57]
      Ti30Nb5Ta3Zr99.268015.327959.5[55]
      316LSS99.558441.9225167[58]
      Co28Cr6Mo99107014.3570-[56]
      Co29Cr9W3Cu99103812.5571-[57]
      Ta99.631030120185[83]
    • Table 3. Grain size and mechanical properties of biodegradable Zn and Mg-based alloys manufactured by different methods

      View table

      Table 3. Grain size and mechanical properties of biodegradable Zn and Mg-based alloys manufactured by different methods

      ProcessMaterialDensity /%Grain size /μmTensile strength /MPaElongation /%
      WE43[76]99.81.130812.2
      L-PBFPure Zn[74]99.95.613410.4
      Pure Zn[20]97.4-61.31.7
      Zn-2WE43[21]99.922991.8
      WE43[76]-1.330722.4
      ExtrusionPure Zn[106]-201007.5
      Pure Zn[69]-<1016739
      Zn-0.8Mg[69]-<1038010
      CastingWE43[76]-44.31894.4
      Pure Zn[107]--180.32
    Tools

    Get Citation

    Copy Citation Text

    Yin Bangzhao, Qin Yu, Wen Peng, Zheng Yufeng, Tian Yun. Laser Powder Bed Fusion for Fabrication of Metal Orthopedic Implants[J]. Chinese Journal of Lasers, 2020, 47(11): 1100001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jun. 1, 2020

    Accepted: --

    Published Online: Nov. 2, 2020

    The Author Email:

    DOI:10.3788/CJL202047.1100001

    Topics