Journal of Infrared and Millimeter Waves, Volume. 44, Issue 3, 413(2025)
Waveform frequency domain matching-based positioning method for satellite-borne LIDAR footprints
[2] Chen J Y, Tang X M, Li G Y et al. Terrain height assessment of satellite laser altimetry standard products for natural resources[J]. National Remote Sensing Bulletin, 28, 704-716(2024).
[3] Abshire J B, Sun X L, Riris H et al. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance[J]. Geophysical Research Letters, 32, L21S02(2005).
[4] Markus T, Neumann T, Martino A et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).
[5] Potapov P, Li X, Hernandez-Serna A et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment, 253, 112165(2021).
[6] Wang Z J, Zhang Y, Liu D et al. Research on the development of detection satellite technology in the novel multi-beam land and ocean lidar[J]. Infrared and Laser Engineering, 50, 158-168(2021).
[7] Wang J R, Yang Y X, Hu Y et al. Preliminary location accuracy assessments of GF-14 stereo mapping satellite without ground control points[J]. Acta Geodaetica et Cartographica Sinica, 52, 8-14(2023).
[8] Lai K J, Bu L B, Wang Q et al. Inversion and validation of atmospheric CO2 column concentration inversion of spaceborne IPDA lidar based on atmospheric environment monitoring satellite[J]. Acta Optica Sinica, 44, 182-194(2024).
[10] Abshire J B, Sun X, Riris H et al. Geoscience laser altimeter system (GLAS) on the ICESat mission: Pre-launch and on-orbit measurement performance[C], 3, 1534-1536(2003).
[11] Schutz B E, Zwally H J, Shuman C A et al. Overview of the ICESat mission[J]. Geophysical Research Letters, 32, L21S01(2005).
[12] Dubayah R, Blair J B, Goetz S et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth's forests and topography[J]. Science of Remote Sensing, 1, 100002(2020).
[17] Abshire J B, Sun X, Riris H et al. Geoscience Laser Altimeter System (GLAS) for the ICESat Mission. In C. Nagasawa & N. Sugimoto (Eds.)[C], 141-144(2003).
[18] Xie J F, Yang C C, Mei Y K et al. Full waveform decomposition of spaceborne laser based on genetic algorithm[J]. Infrared and Laser Engineering, 49, 135-141(2020).
[19] Zhang W H, Li S, Zhang Z Y et al. Using waveform matching to precisely locate footprints of a satellite laser altimeter[J]. Infrared and Laser Engineering, 47, 1117007(2018).
[20] Liu Z, Gao X, Li G et al. Decomposition techniques for ICESat/GLAS full-waveform data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 1179-1182(2018).
[21] Liu R, Xie J F, Mo F et al. Waveform simulation of spaceborne laser altimeter echo based on fine terrain[J]. Acta Photonica Sinica, 47, 1128001(2018).
[22] Wu Y, Wang H, Han Q J et al. A waveform matching-based method of improving laser footprintgeolocation for GaoFen-7spaceborne laser altimeter inmountainous areas br[J]. Journal of Infrared and Millimeter Waves, 41, 1051-1061(2022).
[25] Liu R, Xie J. Calibration of the laser pointing bias of the GaoFen-7 satellite based on simulation waveform matching[J]. Optics Express, 29, 21844-21858(2021).
[26] Li B, Mo D, Wang P et al. FMCW lidar multitarget detection based on skeleton tree waveform matching[J]. Applied Optics, 60, 8328-8335(2021).
[28] Xu Y, Ding S, Chen P et al. Horizontal geolocation error evaluation and correction on full-waveform LiDAR footprints via waveform matching[J]. Remote Sensing, 15, 776(2023).
[29] Luthcke S B, Thomas T C, Pennington T A et al. ICESat‐2 pointing calibration and geolocation performance[J]. Earth and Space Science, 8, e2020EA001494(2021).
[30] Tang X, Xie J, Liu R et al. Overview of the GF‐7 laser altimeter system mission[J]. Earth and Space Science, 7, e2019EA000777(2020).
[31] Li G, Guo J, Tang X et al. Preliminary quality analysis of GF-7 satellite laser altimeter full waveform data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 129-134(2020).
[33] Aiyan G, Jun D, Chengguang Z. Design and on-orbit validation of GF-7 satellite laser altimeter[J]. Spacecraft Engineering, 39, 43-48(2020).
[34] Guo J Q, Li G Y, Zuo Z Q et al. Full waveform data quality and characteristic analysis of GF-7 satellite laser altimeter[J]. Infrared and Laser Engineering, 49, 20200387(2020).
[35] Li G, Tang X, Zhang C et al. Multi-criteria constraint algorithm for selecting ICESat/GLAS data as elevation control points[J]. Journal of Remote Sensing, 21, 96-104(2017).
[36] Tang X, Xie J, Gao X et al. The in-orbit calibration method based on terrain matching with pyramid-search for the spaceborne laser altimeter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 1053-1062(2019).
Get Citation
Copy Citation Text
Si-Han ZHOU, Pu-Fan ZHAO, Qi-Jin HAN, Chao LUAN, Jian YANG, Heng WANG, Yue MA, Hui ZHOU, Song LI. Waveform frequency domain matching-based positioning method for satellite-borne LIDAR footprints[J]. Journal of Infrared and Millimeter Waves, 2025, 44(3): 413
Category: Infrared Optoelectronic System and Application Technology
Received: Sep. 3, 2024
Accepted: --
Published Online: Jul. 9, 2025
The Author Email: Song LI (ls@whu.edu.cn)