Chinese Journal of Lasers, Volume. 48, Issue 12, 1206001(2021)
On-Chip Integrated Multi-Dimensional Optical Interconnects and Optical Processing
[2] Miller D A B. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 97, 1166-1185(2009).
[3] Track E, Forbes N, Strawn G. The end of Moore’s law[J]. Computing in Science & Engineering, 19, 4-6(2017).
[4] Magen N, Kolodny A, Weiser U et al. Interconnect-power dissipation in a microprocessor[C]. //Proceedings of the 2004 International Workshop on System Level Interconnect Prediction, February 14-15, 2004, Paris, France., 7-13(2004).
[9] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 24, 4600-4615(2006).
[16] Winzer P J. Modulation and multiplexing in optical communications[C]. //2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, June 2-4, 2009, Baltimore, MD, USA., 1-2(2009).
[20] Winzer P J. High-spectral-efficiency optical modulation formats[J]. Journal of Lightwave Technology, 30, 3824-3835(2012).
[21] Gui C C, Wang J. Experimental performance evaluation of quadrature amplitude modulation signal transmission in a silicon microring[J]. Photonics Research, 4, 168-172(2016).
[27] Chen S T, Fu X, Wang J et al. Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 33, 2279-2285(2015).
[32] Dai D X, Li C L, Wang S P et al. 10-channel mode (de)multiplexer with dual polarizations[J]. Laser & Photonics Reviews, 12, 1700109(2018).
[34] Kim Y, Lee M H, Kim Y et al. High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide[J]. Optics Letters, 43, 3241-3244(2018).
[35] Tian Y, Qiu J F, Liu C et al. Compact polarization beam splitter with a high extinction ratio over S + C + L band[J]. Optics Express, 27, 999-1009(2019).
[38] Dai D X, Wang J, Chen S T et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing[J]. Laser & Photonics Reviews, 9, 339-344(2015).
[44] Luo L W, Ophir N, Chen C P et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 5, 3069(2014).
[51] Zhang J, Kuo B P P, Radic S. 64 Gb/s PAM4 and 160 Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD[J]. Optics Express, 28, 23266-23273(2020).
[53] Marchetti R, Lacava C, Carroll L et al. Coupling strategies for silicon photonics integrated chips[J]. Photonics Research, 7, 201-239(2019).
[56] Carroll L, Lee J S, Scarcella C et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices[J]. Applied Sciences, 6, 426(2016).
[58] Dietrich P I, Blaicher M, Reuter I et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration[J]. Nature Photonics, 12, 241-247(2018).
[65] Billah M R, Blaicher M, Kemal J N et al. 8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding[C]. //Optical Fiber Communication Conference 2017, March 19-23, 2017, Los Angeles, California, Th5D, 6(2017).
[66] Zhang C, Bowers J E. Silicon photonic terabit/s network-on-chip for datacenter interconnection[J]. Optical Fiber Technology, 44, 2-12(2018).
[67] Lal V, Studenkov P, Frost T et al. 1.6 Tbps coherent 2-channel transceiver using a monolithic Tx/Rx InP PIC and single SiGe ASIC[C]. //2020 Optical Fiber Communications Conference and Exhibition (OFC), March 8-12, 2020, San Diego, CA, USA., 1-3(2020).
[71] Long Y, Liu J, Hu X et al. All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide[J]. Optics Letters, 40, 5475-5478(2015).
[73] Long Y, Wang Y, Hu X et al. Channel-selective wavelength conversion of quadrature amplitude modulation signal using a graphene-assisted silicon microring resonator[J]. Optics Letters, 42, 799-802(2017).
[74] Chen G Y, Yu Y, Sun C L et al. Phase erasure and wavelength conversion using silicon nonlinear waveguide with reverse biased PIN junctions[C]. //Asia Communications and Photonics Conference 2015, November 19-23, 2015, Hong Kong, China, AS3J, 4(2015).
[78] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2, 1-16(2019).
[80] Li W, Wang W T, Sun W H et al. Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer[J]. IEEE Photonics Journal, 6, 1-8(2014).
[82] Washburn B R, Diddams S A, Newbury N R et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 29, 250-252(2004).
[84] Griffith A G, Lau R K W, Cardenas J et al. Silicon-chip mid-infrared frequency comb generation[J]. Nature Communications, 6, 1-5(2015).
[87] Li S Y, Zhou Y Y, Dong J J et al. Universal multimode waveguide crossing based on transformation optics[J]. Optica, 5, 1549-1556(2018).
[88] Li S Y, Cai L F, Gao D S et al. Compact and broadband multimode waveguide bend by shape-optimizing with transformation optics[J]. Photonics Research, 8, 1843-1849(2020).
[89] Sun C, Yu Y, Chen G et al. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks[J]. Optics Letters, 41, 3257-3260(2016).
[90] Sun C, Wu W, Yu Y et al. Integrated tunable mode filter for a mode-division multiplexing system[J]. Optics Letters, 43, 3658-3661(2018).
[93] Guo J S, Ye C C, Liu C Y et al. Ultra-compact and ultra-broadband guided-mode exchangers on silicon[J]. Laser & Photonics Reviews, 14, 2000058(2020).
[94] Sun C L, Wu W H, Yu Y et al. De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing[J]. Nanophotonics, 7, 1571-1580(2018).
[97] Xu H N, Dai D X, Shi Y C. Metamaterial polarization beam splitter: ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials[J]. Laser & Photonics Reviews, 13, 1970021(2019).
[100] Wu W H, Yu Y, Liu W et al. Fully integrated CMOS-compatible polarization analyzer[J]. Nanophotonics, 8, 467-474(2019).
[101] Zhou H L, Zhao Y H, Wei Y X et al. All-in-one silicon photonic polarization processor[J]. Nanophotonics, 8, 2257-2267(2019).
[104] Qiu J F, Sun K, Rochette M et al. Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 22, 1199-1201(2010).
[105] Dong J, Zhang X, Wang Y et al. 40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA[J]. Electronics Letters, 43, 884-886(2007).
[109] Wang J, Sun J Q, Zhang X L et al. Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate[J]. Optics Letters, 33, 1419-1421(2008).
[111] Long Y, Gui C C, Wang A D et al. All-optical three-input simultaneous multicasted quaternary addition/subtraction using non-degenerate FWM in a silicon waveguide and 20 Gibt/s QPSK signal[C]. //Optical Fiber Communication Conference, March 20-22, 2016, Th2A, 6(2016).
[114] Zheng S, Long Y, Gao D S et al. Chip-scale reconfigurable optical full-field manipulation: enabling a compact grooming photonic signal processor[J]. ACS Photonics, 7, 1235-1245(2020).
[116] Annoni A, Guglielmi E, Carminati M et al. Unscrambling light-automatically undoing strong mixing between modes[J]. Light, Science & Applications, 6, e17110(2017).
[117] Zhou H L, Zhao Y H, Wang X et al. Self-configuring and reconfigurable silicon photonic signal processor[J]. ACS Photonics, 7, 792-799(2020).
Get Citation
Copy Citation Text
Jian Wang, Xiaoping Cao, Xinliang Zhang. On-Chip Integrated Multi-Dimensional Optical Interconnects and Optical Processing[J]. Chinese Journal of Lasers, 2021, 48(12): 1206001
Category: fiber optics and optical communications
Received: Mar. 1, 2021
Accepted: Apr. 13, 2021
Published Online: Jun. 7, 2021
The Author Email: Wang Jian (jwang@hust.edu.cn), Zhang Xinliang (xlzhang@hust.edu.cn)