Journal of Synthetic Crystals, Volume. 54, Issue 6, 924(2025)

Research Progress on Application of Machine Learning in Molecular Beam Epitaxy Growth

Zaihong YANG, Can ZHOU, Liuyan FAN, Yanhui ZHANG, Zezhong CHEN*, and Pingping CHEN
Author Affiliations
  • School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai200093, China
  • show less
    References(53)

    [1] GUPTA V, LIAO W K, CHOUDHARY A et al. Evolution of artificial intelligence for application in contemporary materials science. MRS Communications, 13, 754-763(2023).

    [2] ABOLHASANI M, BROWN K A, EDITORS G. Role of AI in experimental materials science. MRS Bulletin, 48, 134-141(2023).

    [3] JAIN A. Machine learning in materials research: developments over the last decade and challenges for the future. Current Opinion in Solid State and Materials Science, 33, 101189(2024).

    [4] BUTLER K T, DAVIES D W, CARTWRIGHT H et al. Machine learning for molecular and materials science. Nature, 559, 547-555(2018).

    [5] BATRA R, SONG L, RAMPRASAD R. Emerging materials intelligence ecosystems propelled by machine learning. Nature Reviews Materials, 6, 655-678(2020).

    [6] HENINI M. Molecular beam epitaxy: from research to manufacturing. Thin Solid Films, 306, 331-337(1997).

    [7] CHENG K Y. Development of molecular beam epitaxy technology for III-V compound semiconductor heterostructure devices. Journal of Vacuum Science & Technology A: Vacuum, 31(2013).

    [8] DZIWOKI A, BLYZNIUK B, FREINDL K et al. The use of external fields (magnetic, electric, and strain) in molecular beam epitaxy-the method and application examples. Molecules, 29, 3162(2024).

    [9] BRAHLEK M, LAPANO J, LEE J S. Topological materials by molecular beam epitaxy. Journal of Applied Physics, 128, 210902(2020).

    [10] BAUER G, SPRINGHOLZ G. Molecular beam epitaxy: aspects and applications. Vacuum, 43, 357-365(1992).

    [11] HAFEZ M A, ZAYED M K, ELSAYED-ALI H E. Review: geometric interpretation of reflection and transmission RHEED patterns. Micron, 159, 103286(2022).

    [12] MITURA Z, SZCZYPIŃSKI M M, MITURA S. Discussion of the importance of the refraction effects for RHEED. Applied Surface Science, 421, 247-251(2017).

    [13] FOXON C T. Control of MBE, MOMBE and CBE growth using RHEED. Applied Surface Science, 50, 28-33(1991).

    [14] WANG J H, LUO Z J, ZHOU X et al. Correlation study between RHEED diffraction patterns and crystal surface morphology. Journal of Guizhou University (Natural Sciences), 30, 73-76(2013).

    [15] GONZÁLEZ V I, GALLÉ G, ARNAUD B et al. Observation of large multiple scattering effects in ultrafast electron diffraction on monocrystalline silicon. Physical Review B, 97(2018).

    [16] VASUDEVAN R K, GIANFRANCESCO A G, BADDORF A P et al. Full information acquisition and analysis of reflection high energy electron diffraction data for epitaxial growth processes. Microscopy and Microanalysis, 22, 376-377(2016).

    [17] MITCHELL T M. Machine learning(1997).

    [18] KELLIHER A. Machines learning culture. IEEE MultiMedia, 22, 18-22(2015).

    [19] SEREY J, QUEZADA L, ALFARO M et al. Artificial intelligence methodologies for data management. Symmetry, 13, 2040(2021).

    [20] BOTVINICK M, RITTER S, WANG J X et al. Reinforcement learning, fast and slow. Trends in Cognitive Sciences, 23, 408-422(2019).

    [21] GENUER R, POGGI J M, TULEAU-MALOT C et al. Random forests for big data. Big Data Research, 9, 28-46(2017).

    [22] MANTERO A, ISHWARAN H. Unsupervised random forests. Statistical Analysis and Data Mining: the ASA Data Science Journal, 14, 144-167(2021).

    [23] YU H, WEN G Q, GAN J Z et al. Self-paced learning for K-means clustering algorithm. Pattern Recognition Letters, 132, 69-75(2020).

    [24] WANG B S, BARBU A. Hierarchical classification for large-scale learning. Electronics, 12, 4646(2023).

    [25] HUANG Q, YIN X S, CHEN S C et al. Robust nonnegative matrix factorization with structure regularization. Neurocomputing, 412, 72-90(2020).

    [26] CHEN F H, LI S L, HAN J L et al. Review of lightweight deep convolutional neural networks. Archives of Computational Methods in Engineering, 31, 1915-1937(2024).

    [27] LI Z W, LIU F, YANG W J et al. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33, 6999-7019(2022).

    [28] TAVARA S. Parallel computing of support vector machines: a survey. ACM Computing Surveys, 51, 1-38(2019).

    [29] GEWERS F L, FERREIRA G R, DE-ARRUDA H F et al. Principal component analysis: a natural approach to data exploration. ACM Computing Surveys, 54, 1-34(2021).

    [30] MCINNES L, HEALY J, SAUL N et al. UMAP: uniform manifold approximation and projection. Journal of Open Source Software, 3, 861(2018).

    [31] SPERANDEI S. Understanding logistic regression analysis. Biochemia Medica, 24, 12-18(2014).

    [32] CHEN S L, WEBB G I, LIU L Y et al. A novel selective naïve Bayes algorithm. Knowledge-Based Systems, 192, 105361(2020).

    [33] YU L J, GAN S F, CHEN Y et al. Correlation-based weight adjusted naive Bayes. IEEE Access, 8, 51377-51387(2020).

    [34] WAKABAYASHI Y K, OTSUKA T, KROCKENBERGER Y et al. Machine-learning-assisted thin-film growth: Bayesian optimization in molecular beam epitaxy of SrRuO3 thin films. APL Materials, 7, 101114(2019).

    [35] OHKUBO I, HOU Z, LEE J N et al. Realization of closed-loop optimization of epitaxial titanium nitride thin-film growth via machine learning. Materials Today Physics, 16, 100296(2021).

    [36] MESSECAR A S, DURBIN S M, MAKIN R A. Quantum and classical machine learning investigation of synthesis-structure relationships in epitaxially grown wide band gap semiconductors. MRS Communications, 14, 660-666(2024).

    [37] SHEN C, ZHAN W K, TANG J et al. Universal deoxidation of semiconductor substrates assisted by machine learning and real-time feedback control. ACS Applied Materials & Interfaces, 16, 18213-18221(2024).

    [38] NOH Y K, NOH H K, PARK B G et al. Hybrid NH3/N2 molecular beam epitaxy with artificial-intelligence-assisted reflection high-energy electron diffraction analysis. InInternational Conference on Compound Semiconductor Manufacturing Technology, 24-27(2021).

    [39] KHAIREH-WALIEH A, ARNOULT A, PLISSARD S et al. Monitoring MBE substrate deoxidation via RHEED image-sequence analysis by deep learning. Crystal Growth and Design, 23, 892-898(2023).

    [40] KWOEN J, ARAKAWA Y. Classification of reflection high-energy electron diffraction pattern using machine learning. Crystal Growth & Design, 20, 5289-5293(2020).

    [41] KWOEN J, ARAKAWA Y. Classification of in situ reflection high energy electron diffraction images by principal component analysis. Japanese Journal of Applied Physics, 60(2021).

    [42] KWOEN J, ARAKAWA Y. Multiclass classification of reflection high-energy electron diffraction patterns using deep learning. Journal of Crystal Growth, 593, 126780(2022).

    [43] SHEN C, ZHAN W K, XIN K Y et al. Machine-learning-assisted and real-time-feedback-controlled growth of InAs/GaAs quantum dots. Nature Communications, 15, 2724(2024).

    [44] ANJUM S, LEE H Y, NOH H K. Rotation error detection of gallium nitride (GaN) substrate in MBE utilizing ensemble learning. Crystal Growth & Design, 23, 4138-4146(2023).

    [45] PROVENCE S R, THAPA S, PAUDEL R et al. Machine learning analysis of perovskite oxides grown by molecular beam epitaxy. Physical Review Materials, 4(2020).

    [46] VASUDEVAN R K, TSELEV A, BADDORF A P et al. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes. ACS Nano, 8, 10899-10908(2014).

    [47] GLIEBE K, SEHIRLIOGLU A. Distinct thin film growth characteristics determined through comparative dimension reduction techniques. Journal of Applied Physics, 130, 125301(2021).

    [48] LIANG H T, STANEV V, KUSNE A G et al. Application of machine learning to reflection high-energy electron diffraction images for automated structural phase mapping. Physical Review Materials, 6(2022).

    [49] SCHAEFER S, FEBBA D, EGBO K et al. Rapid screening of molecular beam epitaxy conditions for monoclinic (InxGa1-x)2O3 alloys. Journal of Materials Chemistry A, 12, 5508-5519(2024).

    [50] KIM H J, CHONG M S, RHEE T G et al. Machine-learning-assisted analysis of transition metal dichalcogenide thin-film growth. Nano Convergence, 10, 10(2023).

    [51] YOSHINARI A, IWASAKI Y, KOTSUGI M et al. Skill-Agnostic analysis of reflection high-energy electron diffraction patterns for Si(111) surface superstructures using machine learning. Science and Technology of Advanced Materials: Methods, 2, 162-174(2022).

    [52] PRICE C C, LI Y S, ZHOU G Y et al. Predicting and accelerating nanomaterials synthesis using machine learning featurization. Nano Letters, 4-04500(2024).

    [53] CHONG M S, RHEE T G, KHIM Y G et al. Machine-learning-empowered identification of initial growth modes for 2D transition metal dichalcogenide thin films. Applied Surface Science, 669, 160547(2024).

    Tools

    Get Citation

    Copy Citation Text

    Zaihong YANG, Can ZHOU, Liuyan FAN, Yanhui ZHANG, Zezhong CHEN, Pingping CHEN. Research Progress on Application of Machine Learning in Molecular Beam Epitaxy Growth[J]. Journal of Synthetic Crystals, 2025, 54(6): 924

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 1, 2024

    Accepted: --

    Published Online: Jul. 8, 2025

    The Author Email: Zezhong CHEN (zzhchen@usst.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0272

    Topics