Journal of Inorganic Materials, Volume. 35, Issue 12, 1315(2020)

Blowing Route to Fabricate Foams of 2D Materials

Tian GAO, Qinglin XIAO, Chenyang XU, and Xuebin WANG*
Author Affiliations
  • National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • show less
    References(134)

    [5] BOLOTIN K I, SIKES K J, JIANG Z et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 146, 351-355(2008).

    [24] WANG X, ZHANG Y, ZHI C et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power- density supercapacitors[J]. Nat. Commun, 4, 2905(2013).

    [25] JIANG Y, XU Z, HUANG T et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices[J]. Adv. Funct. Mater, 28, 1707024(2018).

    [27] ITO Y, TANABE Y, QIU H J et al. High-quality three-dimensional nanoporous graphene[J]. Angew. Chem. Int. Ed, 126, 4922-4926(2014).

    [28] QIU L, HE Z, LI D. Multifunctional cellular materials based on 2D nanomaterials: prospects and challenges[J]. Adv. Mater, 30, 1704850(2017).

    [30] LEI H, YAN T, WANG H et al. Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization[J]. J. Mater. Chem. A, 3, 5934-5941(2015).

    [31] WANG C, O’CONNELL M J, CHAN C K. Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis[J]. ACS Appl. Mater, 7, 8952-8960(2015).

    [32] WANG D, ZHOU W, ZHANG R et al. Mass production of large-sized, nonlayered 2D nanosheets: their directed synthesis by a rapid “gel-blowing” strategy, and applications in Li/Na storage and catalysis[J]. Adv. Mater, 30, 1803569(2018).

    [33] ZHAO Y, HUANG S, XIA M et al. N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: a universal synthesis and multifunctional applications[J]. Nano Energy, 28, 346-355(2016).

    [34] DONG X, HU N, WEI L et al. A new strategy to prepare N-doped holey graphene for high-volumetric supercapacitors[J]. J. Mater. Chem. A, 4, 9739-9743(2016).

    [35] DONG Y, YU M, WANG Z et al. A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage[J]. Adv. Funct. Mater, 26, 7590-7598(2016).

    [36] ZHU C, FU S, XU B et al. Sugar blowing-induced porous cobalt phosphide/nitrogen-doped carbon nanostructures with enhanced electrochemical oxidation performance toward water and other small molecules[J]. Small, 13, 1700796(2017).

    [37] WU Z, JOHANNESSEN B, ZHANG W et al. In situ incorporation of nanostructured antimony in an N-doped carbon matrix for advanced sodium-ion batteries[J]. J. Mater. Chem. A, 7, 12842-12850(2019).

    [38] CAI L, LIN Z, WANG M et al. Improved interfacial H2O supply by surface hydroxyl groups for enhanced alkaline hydrogen evolution[J]. J. Mater. Chem. A, 5, 24091-24097(2017).

    [39] TAN Q, ZHAO W, HAN K et al. The multi-yolk/shell structure of FeP@foam-like graphenic scaffolds: strong P-C bonds and electrolyte- and binder-optimization boost potassium storage[J]. J. Mater. Chem. A, 7, 15673-15682(2019).

    [40] TAN Q, LI P, HAN K et al. Chemically bubbled hollow FexO nanospheres anchored on 3D N-doped few-layer graphene architecture as a performance-enhanced anode material for potassium- ion batteries[J]. J. Mater. Chem. A, 7, 744-754(2019).

    [41] HAN K, LIU Z, LI P et al. High-throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage[J]. Energy Storage Mater, 22, 185-193(2019).

    [42] LU X, XU K, CHEN P et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. J. Mater. Chem. A, 2, 18924-18928(2014).

    [43] ZHAO H, SONG X, ZENG H. 3D white graphene foam scavengers: vesicant-assisted foaming boosts the gram-level yield and forms hierarchical pores for superstrong pollutant removal applications[J]. NPG Asia Mater, 7, e168(2015).

    [44] LAKATOS I[M], 1-183(2015).

    [45] WEAIRE D. Some remarks on the arrangement of grains in a polycrystal[J]. Metallography, 7, 157-160(1974).

    [46] RIVIER N. Recent results on the ideal structure of glasses[J]. J. Physique Colloques, 43, 91-95(1982).

    [47] WEAIRE D, PHELAN R. A counter-example to Kelvin's conjecture on minimal surfaces[J]. Philos. Mag. Lett, 69, 107-110(1994).

    [49] ZHOU C, YANG K, WANG K et al. Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds[J]. Mater. Des, 109, 415-424(2016).

    [50] BANHART J. Light-metal foams-history of innovation and technological challenges[J]. Adv. Eng. Mater, 15, 82-111(2013).

    [51] STUDART A R, GONZENBACH U T, TERVOORT E et al. Processing routes to macroporous ceramics: a review[J]. J. Am. Ceram. Soc, 89, 1771-1789(2006).

    [52] INAGAKI M, QIU J, GUO Q. Carbon foam: preparation and application[J]. Carbon, 87, 128-152(2015).

    [53] LIU M, GAN L, ZHAO F et al. Carbon foams with high compressive strength derived from polyarylacetylene resin[J]. Carbon, 45, 3055-3057(2007).

    [54] CHEN S, HE G, HU H et al. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption[J]. Energy Environ. Sci, 6, 2435-2439(2013).

    [55] JIANG X, WANG X, DAI P et al. High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors[J]. Nano Energy, 16, 81-90(2015).

    [56] LEI H, CHEN D, HUO J. Blowing and in-situ activation of carbonaceous “lather” from starch: preparation and potential application[J]. Mater. Des, 92, 362-370(2016).

    [66] CHANG B, YIN H, ZHANG X et al. Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: morphology, pore structure and supercapacitor application[J]. Chem. Eng. J, 312, 191-203(2017).

    [68] ZHENG Y, JIAO Y, GE L et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angew. Chem. Int. Ed, 52, 3110-3116(2013).

    [69] ZHAO Y, YANG L, CHEN S et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. Am. Chem. Soc, 135, 1201-1204(2013).

    [70] JIAO Y, ZHENG Y, DAVEY K et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom- doped graphene[J]. Nat. Energy, 1, 16130(2016).

    [71] JIN L, HE G, XUE J et al. Cu/graphene with high catalytic activity prepared by glucose blowing for reduction of p-nitrophenol[J]. J. Cleaner Prod, 161, 655-662(2017).

    [72] YAO Y, XU Z, CHENG F et al. Unlocking the potential of graphene for water oxidation using an orbital hybridization strategy[J]. Energy Environ. Sci, 11, 407-416(2018).

    [73] LI R, WANG B, GAO T et al. Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting[J]. Nano Energy, 58, 870-876(2019).

    [74] XU Y, WANG L, JIA W et al. Three-dimensional carbon material as stable host for dendrite-free lithium metal anodes[J]. Electrochim. Acta, 301, 251-257(2019).

    [75] JIN J, GU L, JIANG L et al. A direct phase separation approach synthesis of hierarchically porous functional carbon as an advanced electrocatalyst for oxygen reduction reaction[J]. Carbon, 109, 306-313(2016).

    [76] WANG Y, HAO J, YU J et al. Hierarchically porous N-doped carbon derived from biomass as oxygen reduction electrocatalyst for high-performance Al-air battery[J]. J. Energy Chem, 45, 119-125(2020).

    [81] SHAO J, MA F, WU G et al. Facile preparation of 3D nanostructured O/N co-doped porous carbon constructed by interconnected carbon nanosheets for excellent-performance supercapacitors[J]. Electrochim. Acta, 222, 793-805(2016).

    [83] LI J, WANG N, DENG J et al. Flexible metal-templated fabrication of mesoporous onion-like carbon and Fe2O3@N-doped carbon foam for electrochemical energy storage[J]. J. Mater. Chem. A, 6, 13012-13020(2018).

    [85] TIAN W, ZHANG H, QIAN Z et al. Bread-making synthesis of hierarchically Co@C nanoarchitecture in heteroatom doped porous carbons for oxidative degradation of emerging contaminants[J]. Appl. Catal. B, 225, 76-83(2018).

    [86] HE C, JIANG Y, ZHANG X et al. A simple glucose-blowing approach to graphene-like foam/NiO composites for asymmetric supercapacitors[J]. Energy Technol, 1900923(2019).

    [87] GUO Q, ZHANG Y, ZHANG H et al. 3D foam strutted graphene carbon nitride with highly stable optoelectronic properties[J]. Adv. Funct. Mater, 27, 1703711(2017).

    [89] TALAPANENI S N, LEE J H, JE S H et al. Chemical blowing approach for ultramicroporous carbon nitride frameworks and their applications in gas and energy storage[J]. Adv. Funct. Mater, 27, 1604658(2017).

    [95] MALEKI M, BEITOLLAHI A, SHOKOUHIMEHR M. Template- free synthesis of porous boron nitride using a single source precursor[J]. RSC Adv, 5, 46823-46828(2015).

    [97] WENG Q, IDE Y, WANG X et al. Design of BN porous sheets with richly exposed (002) plane edges and their application as TiO2 visible light sensitizer[J]. Nano Energy, 16, 19-27(2015).

    [98] LEI W, PORTEHAULT D, LIU D et al. Porous boron nitride nanosheets for effective water cleaning[J]. Nat. Commun, 4, 1777(2013).

    [99] LIAN G, ZHANG X, ZHANG S et al. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment[J]. Energy Environ. Sci, 5, 7072-7080(2012).

    [100] WENG Q, WANG X, BANDO Y et al. One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage[J]. Adv. Energy Mater, 4, 1301525(2014).

    [102] XUE Y, DAI P, JIANG X et al. Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification[J]. J. Mater. Chem. A, 4, 1469-1478(2016).

    [104] WU P, ZHU W, CHAO Y et al. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization[J]. Chem. Commun, 52, 144-147(2016).

    [105] CI L, SONG L, JIN C et al. Atomic layers of hybridized boron nitride and graphene domains[J]. Nat. Mater, 9, 430-435(2010).

    [106] LIU S, WANG Z, HAN T et al. Mesoporous magnesium oxide nanosheet electrocatalysts for the detection of lead (II)[J]. ACS Appl. Nano Mater, 2, 2606-2611(2019).

    [108] MEZA L R, DAS S, GREER J R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 345, 1322-1326(2014).

    [109] SCHAEDLER T A, JACOBSEN A J, TORRENTS A et al. Ultralight metallic microlattices[J]. Science, 334, 962-965(2011).

    [112] JI H, SELLAN D P, PETTES M T et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage[J]. Energy Environ. Sci, 7, 1185-1192(2014).

    [114] WANG X, PAKDEL A, ZHANG J et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties[J]. Nanoscale Res. Lett, 7, 662(2012).

    [115] XU C, MIAO M, JIANG X et al. Thermal conductive composites reinforced via advanced boron nitride nanomaterials[J]. Compos. Commun, 10, 103-109(2018).

    [117] XUE Y, DAI P, ZHOU M et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures[J]. ACS Nano, 11, 558-568(2017).

    [118] TIAN Z, SUN J, WANG S et al. A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride[J]. J. Mater. Chem. A, 6, 17540-17547(2018).

    [119] NARASIMMAN R, VIJAYAN S, PRABHAKARAN K. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams[J]. Mater. Sci. Eng. B, 189, 82-89(2014).

    [122] JIA H, LI J, LIU Z et al. Three-dimensional carbon boron nitrides with a broken, hollow, spherical shell for water treatment[J]. RSC Adv, 6, 78252-78256(2016).

    [123] LI J, HUANG Y, LIU Z et al. Chemical activation of boron nitride fibers for improved cationic dye removal performance[J]. J. Mater. Chem. A, 3, 8185-8193(2015).

    [124] LIN J, XU L, HUANG Y et al. Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties[J]. RSC Adv, 6, 1253-1259(2016).

    [125] ZHANG X, LIAN G, ZHANG S et al. Boron nitride nanocarpets: controllable synthesis and their adsorption performance to organic pollutants[J]. CrystEngComm, 14, 4670-4676(2012).

    [128] WU C, WANG B, WANG Y. One-step fabrication of boron nitride fibers networks[J]. Ceram. Int, 44, 5385-5391(2018).

    [130] CHEN P, YANG J, LI S et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2, 249-256(2013).

    [131] YANG X, ZHU J, QIU L et al. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors[J]. Adv. Mater, 23, 2833-2838(2011).

    [134] KIM B, YANG G, PARK M et al. Three-dimensional graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes[J]. Appl. Phys. Lett, 102, 161902(2013).

    Tools

    Get Citation

    Copy Citation Text

    Tian GAO, Qinglin XIAO, Chenyang XU, Xuebin WANG. Blowing Route to Fabricate Foams of 2D Materials[J]. Journal of Inorganic Materials, 2020, 35(12): 1315

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Feb. 29, 2020

    Accepted: --

    Published Online: Mar. 10, 2021

    The Author Email: Xuebin WANG (wangxb@nju.edu.cn)

    DOI:10.15541/jim20200096

    Topics