Chinese Journal of Lasers, Volume. 48, Issue 2, 0202020(2021)
Progress in Ultrafast Laser-Induced Nucleation and Crystal Growth
[1] McPherson A, GaviraJ A. Introduction to protein crystallization[J]. Acta Crystallogr Section F, 70, 2-20(2014).
[2] Yoshikawa H Y, Murai R, Adachi H et al. Laser ablation for protein crystal nucleation and seeding[J]. Chemical Society Reviews, 43, 2147-2158(2014).
[3] Alexander A J, Camp P J. Non-photochemical laser-induced nucleation[J]. The Journal of Chemical Physics, 150, 040901(2019).
[4] Liu Y, Alexander A J. Supersaturation dependence of glycine polymorphism using laser-induced nucleation, sonocrystallization and nucleation by mechanical shock[J]. Physical Chemistry Chemical Physics, 19, 19386-19392(2017).
[5] Mori Y, Maruyama M, Takahashi Y et al. Selective crystallization of metastable phase of acetaminophen by ultrasonic irradiation[J]. Applied Physics Express, 8, 065501(2015).
[6] Su C S, Liao C Y, Jheng W D. Particlesize control and crystal habit modification of phenacetin using ultrasonic crystallization[J]. Chemical Engineering & Technology, 38, 181-186(2015).
[7] Bhangu S K, Ashokkumar M, Lee J. Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control[J]. Crystal Growth & Design, 16, 1934-1941(2016).
[8] Sudha C, Sivanarendiran R, Srinivasan K. Influence of magnetic field on the nucleation rate control of mono paracetamol[J]. Crystal Research and Technology, 50, 230-235(2015).
[9] Mohammed M. SyedM F, Bhatt M J, et al. Rapid and selective crystallization of acetaminophen using metal-assisted and microwave-accelerated evaporative crystallization[J]. Nano Biomedicine and Engineering, 4, 35-40(2012).
[10] Sun J K, Sobolev Y I, Zhang W Y et al. Enhancing crystal growth using polyelectrolyte solutions and shear flow[J]. Nature, 579, 73-79(2020).
[11] Jiang L, Li L S, Wang S M et al. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part I: photon absorption[J]. Chinese Journal of Lasers, 36, 779-789(2009).
[12] Zhong M L, Fan P X. Applications of laser nano manufacturing technologies[J]. Chinese Journal of Lasers, 38, 0601001(2011).
[13] Jiang L. WangA D, Li B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light Science & Applications, 7, 17134(2018).
[14] Shi Y, Xu B, Wu D et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 46, 1000001(2019).
[15] Alexander A J, Camp P J. Single pulse, single crystal laser-induced nucleation of potassium chloride[J]. Crystal Growth & Design, 9, 958-963(2009).
[16] Duffus C, Camp P J, Alexander A J. Spatial control of crystal nucleation in agarose gel[J]. Journal of the American Chemical Society, 131, 11676-11677(2009).
[17] Ward M R, Rae A, Alexander A J. Nonphotochemical laser-induced crystal nucleation by an evanescent wave[J]. Crystal Growth & Design, 15, 4600-4605(2015).
[18] Shilpa T. Small and macromolecules crystallization induced by focused ultrafast laser[J]. Proceedings of the Indian National Science Academy, 81, 517-523(2015).
[19] Kacker R, Dhingra S, Irimia D et al. Multiparameter investigation of laser-induced nucleation of supersaturated aqueous KCl solutions[J]. Crystal Growth & Design, 18, 312-317(2018).
[20] Mirsaleh-Kohan N, Fischer A, Graves B et al. Laser shock wave induced crystallization[J]. Crystal Growth & Design, 17, 576-581(2017).
[21] Barber E R. Kinney N L H, Alexander A J. Pulsed laser-induced nucleation of sodium chlorate at high energy densities[J]. Crystal Growth & Design, 19, 7106-7111(2019).
[22] Yoshikawa H Y, Hosokawa Y, Masuhara H. Explosive crystallization of urea triggered by focused femtosecond laser irradiation[J]. Japanese Journal of Applied Physics, 45, L23-L26(2006).
[23] Chou S S, Swartzentruber B S, Janish M T et al. Laser direct write synthesis of lead halide perovskites[J]. The Journal of Physical Chemistry Letters, 7, 3736-3741(2016).
[24] Jeon T, Jin H M, Lee S H et al. Laser crystallization of organic-inorganic hybrid perovskite solar cells[J]. ACS Nano, 10, 7907-7914(2016).
[25] Javid N, Kendall T, Burns I S et al. Filtration suppresses laser-induced nucleation of glycine in aqueous solutions[J]. Crystal Growth & Design, 16, 4196-4202(2016).
[26] Li W J, Ikni A, Scouflaire P et al. Non-photochemical laser-induced nucleation of sulfathiazole in a water/ethanol mixture[J]. Crystal Growth & Design, 16, 2514-2526(2016).
[27] Arciniegas M P, Castelli A, Piazza S et al. Laser-induced localized growth of methylammonium lead halide perovskite nano- and microcrystals on substrates[J]. Advanced Functional Materials, 27, 1701613(2017).
[28] Liu Y, Ward M R, Alexander A J. Polarization independence of laser-induced nucleation in supersaturated aqueous urea solutions[J]. Physical Chemistry Chemical Physics, 19, 3464-3467(2017).
[29] Liu T H, Yuyama K I, Hiramatsu T et al. Femtosecond-laser-enhanced amyloid fibril formation of insulin[J]. Langmuir, 33, 8311-8318(2017).
[30] Tasnim T, Goh A, Gowayed O et al. Dendritic growth of glycine from nonphotochemical laser-induced nucleation of supersaturated aqueous solutions in agarose gels[J]. Crystal Growth & Design, 18, 5927-5933(2018).
[31] Yamamoto Y, Nishimura Y, Tokonami S et al. Macroscopically anisotropic structures produced by light-induced solvothermal assembly of porphyrin dimers[J]. Scientific Reports, 8, 11108(2018).
[32] Walton F, Wynne K. Using optical tweezing to control phase separation and nucleation near a liquid-liquid critical point[J]. Soft Matter, 15, 8279-8289(2019).
[33] Wang S B, Wang S M, Jiang L et al. Polymorph-controlled crystallization of acetaminophen through femtosecond laser irradiation[J]. Crystal Growth & Design, 19, 3265-3271(2019).
[34] Yuyama K I, Marcelis L, Su P M et al. Photocontrolled supramolecular assembling of azobenzene-based biscalix[4]arenes upon starting and stopping laser trapping[J]. Langmuir, 33, 755-763(2017).
[35] Adachi H, Takano K, Hosokawa Y et al. Laser irradiated growth of protein crystal[J]. Japanese Journal of Applied Physics, 42, L798-L800(2003).
[36] Nakamura K, Sora Y, Yoshikawa H Y et al. Femtosecond laser-induced crystallization of protein in gel medium[J]. Applied Surface Science, 253, 6425-6429(2007).
[37] Yoshikawa H Y, Murai R, Sugiyama S et al. Femtosecond laser-induced nucleation of protein in agarose gel[J]. Journal of Crystal Growth, 311, 956-959(2009).
[38] Murai R, Yoshikawa H Y, Takahashi Y et al. Enhancement of femtosecond laser-induced nucleation of protein in a gel solution[J]. Applied Physics Letters, 96, 043702(2010).
[39] Iefuji N, Murai R, Maruyama M et al. Laser-induced nucleation in protein crystallization: local increase in protein concentration induced by femtosecond laser irradiation[J]. Journal of Crystal Growth, 318, 741-744(2011).
[40] Sugiyama T, Yuyama K, Masuhara H. Laser trapping chemistry: from polymer assembly to amino acid crystallization[J]. Accounts of Chemical Research, 45, 1946-1954(2012).
[41] Yuyama K I, Chang K D, Tu J R et al. Rapid localized crystallization of lysozyme by laser trapping[J]. Physical Chemistry Chemical Physics: PCCP, 20, 6034-6039(2018).
[42] Nabetani Y, Yoshikawa H, Grimsdale A C et al. Effects of optical trapping and liquid surface deformation on the laser microdeposition of a polymer assembly in solution[J]. Langmuir, 23, 6725-6729(2007).
[43] Ruecroft G, Hipkiss D, Ly T et al. Sonocrystallization: the use of ultrasound for improved industrial crystallization[J]. Organic Process Research & Development, 9, 923-932(2005).
[44] Munroe Á, Rasmuson Å C, Hodnett B K et al. Relative stabilities of the five polymorphs of sulfathiazole[J]. Crystal Growth & Design, 12, 2825-2835(2012).
[45] Agnew L R, Cruickshank D L. McGlone T, et al. Controlled production of the elusive metastable form II of acetaminophen (paracetamol): a fully scalable templating approach in a cooling environment[J]. Chemical Communications, 52, 7368-7371(2016).
[46] Higashi K, Ueda K, Moribe K. Recent progress of structural study of polymorphic pharmaceutical drugs[J]. Advanced Drug Delivery Reviews, 117, 71-85(2017).
[47] Hao X, Liu J F, Luo H Y et al. Crystal structure optimization and Gibbs free energy comparison of five sulfathiazole polymorphs by the embedded fragment QM method at the DFT level[J]. Crystals, 9, 256(2019).
[48] Song S, Wang L, Yao C L et al. Crystallization of sulfathiazole in gel: polymorph selectivity and cross-nucleation[J]. Crystal Growth & Design, 20, 9-16(2020).
[49] Faccio D, Tamošauskas G, Rubino E et al. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 86, 036304(2012).
[50] Tinne N, Knoop G, Kallweit N et al. Effects of cavitation bubble interaction with temporally separated fs-laser pulses[J]. Journal of Biomedical Optics, 19, 048001(2014).
[51] Chayen N E, Saridakis E, Sear R P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 597-601(2006).
[52] Wohlgemuth K, Kordylla A, Ruether F et al. Experimental study of the effect of bubbles on nucleation during batch cooling crystallization[J]. Chemical Engineering Science, 64, 4155-4163(2009).
[53] Yuyama K, Sugiyama T, Masuhara H. Laser trapping and crystallization dynamics of l-phenylalanine at solution surface[J]. The Journal of Physical Chemistry Letters, 4, 2436-2440(2013).
[54] Tu J R, Yuyama K I, Masuhara H et al. Dynamics and mechanism of laser trapping-induced crystal growth of hen egg white lysozyme[J]. Crystal Growth & Design, 15, 4760-4767(2015).
[55] Tominaga Y, Maruyama M, Yoshimura M et al. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation[J]. Nature Photonics, 10, 723-726(2016).
[56] Suzuki D, Nakabayashi S, Yoshikawa H Y. Control of organic crystal shape by femtosecond laser ablation[J]. Crystal Growth & Design, 18, 4829-4833(2018).
[57] Murakami A, Kitano H, Adachi H et al. Universal processing technique for protein crystals using pulsed UV laser[J]. Japanese Journal of Applied Physics, 43, L873-L876(2004).
[58] Kashii M, Kitano H, Hosokawa Y et al. Femtosecond laser processing of protein crystals in crystallization drop[J]. Japanese Journal of Applied Physics, 44, L873-L875(2005).
[59] Kashii M, Hosokawa Y, Kitano H et al. Femtosecond laser-induced cleaving of protein crystal in water solution[J]. Applied Surface Science, 253, 6447-6450(2007).
[60] Hasenaka H, Sugiyama S, Hirose M et al. Femtosecond laser processing of protein crystals grown in agarose gel[J]. Journal of Crystal Growth, 312, 73-78(2009).
[61] Yoshikawa H Y, Hosokawa Y, Murai R et al. Spatially precise, soft microseeding of single protein crystals by femtosecond laser ablation[J]. Crystal Growth & Design, 12, 4334-4339(2012).
[62] Wu C S, Hsieh P Y, Yuyama KI et al. Pseudopolymorph control of l-phenylalanine achieved by laser trapping[J]. Crystal Growth & Design, 18, 5417-5425(2018).
[63] Suzuki Y, Sazaki G, Matsumoto M et al. First direct observation of elementary steps on the surfaces of glucose isomerase crystals under high pressure[J]. Crystal Growth & Design, 9, 4289-4295(2009).
[64] Zhang S, Zeng X. Matthews D T A, et al. Selection of micro-fabrication techniques on stainless steel sheet for skin friction[J]. Friction, 4, 89-104(2016).
[65] Long J Y, Fan P X, Gong D W et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 43, 0800001(2016).
[66] Lao Z X, Hu Y L, Zhang C C et al. Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles[J]. ACS Nano, 9, 12060-12069(2015).
[67] Yoo J H, Kwon H J, Paeng D et al. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal[J]. Nanotechnology, 27, 145604(2016).
[68] Sun S M, Sun Y L, Liu D X et al. Protein functional devices manufactured by femtosecond laser direct writing[J]. Laser & Optoelectronics Progress, 50, 080003(2013).
[69] Applegate M B, Coburn J, Partlow B P et al. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds[J]. Proceedings of the National Acadamy of Sciences of the United States of America, 112, 12052-12057(2015).
[70] Yu J C, Jiang L, Yan J F et al. Microprocessing on single protein crystals using femtosecond pulse laser[J]. ACS Biomaterials Science & Engineering, 6, 6445-6452(2020).
[71] Gamaly E G, Rode A V, Luther-Davies B et al. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics[J]. Physics of Plasmas, 9, 949-957(2002).
[72] Sidhu M S, Kumar B, Singh K P. The processing and heterostructuring of silk with light[J]. Nature Materials, 16, 938-945(2017).
[73] Oujja M, Pérez S, Fadeeva E et al. Three dimensional microstructuring of biopolymers by femtosecond laser irradiation[J]. Applied Physics Letters, 95, 263703(2009).
[74] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).
[75] Lazare S, Sionkowska A, Zaborowicz M et al. Bombyx mori silk protein films microprocessing with a nanosecond ultraviolet laser and a femtosecond laser workstation: theory and experiments[J]. Applied Physics A, 106, 67-77(2012).
[76] Lin C Y, Li P K, Cheng L C et al. High-throughput multiphoton-induced three-dimensional ablation and imaging for biotissues[J]. Biomedical Optics Express, 6, 491-499(2015).
[77] Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).
[78] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 100, 023116(2006).
[79] Cheow W S, Xu R, Hadinoto K. Towards sustainability: new approaches to nano-drug preparation[J]. Current Pharmaceutical Design, 19, 6229-6245(2013).
[80] Lee T, Kim S U, Min J H et al. Multilevel biomemory device consisting of recombinant azurin/cytochrome C[J]. Advanced Materials, 22, 510-514(2010).
[81] Torculas M, Medina J, Xue W et al. Protein-based bioelectronics[J]. ACS Biomaterials Science & Engineering, 2, 1211-1223(2016).
[82] Bostick C D, Mukhopadhyay S, Pecht I et al. Protein bioelectronics: a review of what we do and do not know[J]. Reports on Progress in Physics, 81, 026601(2018).
[83] Romanov V, Davidoff S N, Miles A R et al. A critical comparison of protein microarray fabrication technologies[J]. The Analyst, 139, 1303-1326(2014).
[84] Liu W D, Li Y F, Yang B. Fabrication and applications of the protein patterns[J]. Science China Chemistry, 56, 1087-1100(2013).
[85] Launiere C, Gaskill M, Czaplewski G et al. Channel surface patterning of alternating biomimetic protein combinations for enhanced microfluidic tumor cell isolation[J]. Analytical Chemistry, 84, 4022-4028(2012).
[86] Okano K, Matsui A, Maezawa Y et al. In situ laser micropatterning of proteins for dynamically arranging living cells[J]. Lab on a Chip, 13, 4078-4086(2013).
[87] Scott M A. Wissner-Gross Z D, Yanik M F. Ultra-rapid laser protein micropatterning: screening for directed polarization of single neurons[J]. Lab Chip, 12, 2265-2276(2012).
[88] Pesen D, Haviland D B. Modulation of cell adhesion complexes by surface protein patterns[J]. ACS Applied Materials & Interfaces, 1, 543-548(2009).
[89] Qiao M, Wang H, Lu H et al. Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser[J]. Science China Materials, 63, 1300-1309(2020).
[90] Sun Y L, Sun S M, Wang P et al. Customization of protein single nanowires for optical biosensing[J]. Small, 11, 2869-2876(2015).
[91] Sun Y L, Dong W F, Niu L G et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 3, e129(2014).
[92] Dinca V, Farsari M, Kafetzopoulos D et al. Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers[J]. Thin Solid Films, 516, 6504-6511(2008).
[93] Wu P K, Ringeisen B R, Krizman D B et al. Laser transfer of biomaterials: matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE direct write[J]. Review of Scientific Instruments, 74, 2546-2557(2003).
[94] Hosokawa Y, Matsumura S, Masuhara H et al. Laser trapping and patterning of protein microcrystals: toward highly integrated protein microarrays[J]. Journal of Applied Physics, 96, 2945-2948(2004).
[95] Shi Z Y, Zhou L Q, Zhang L C et al. Dynamic laser parallel fabrication based on multifocal array[J]. Acta Optica Sinica, 40, 1014004(2020).
Get Citation
Copy Citation Text
Jiachen Yu, Jianfeng Yan, Xin Li, Liangti Qu. Progress in Ultrafast Laser-Induced Nucleation and Crystal Growth[J]. Chinese Journal of Lasers, 2021, 48(2): 0202020
Category: laser manufacturing
Received: Aug. 3, 2020
Accepted: Sep. 27, 2020
Published Online: Jan. 6, 2021
The Author Email: Yan Jianfeng (yanjianfeng@tsinghua.edu.cn)