Optics and Precision Engineering, Volume. 33, Issue 1, 148(2025)
Conditional diffusion and multi-channel high-low frequency parallel fusion of infrared and visible light images
[1] HUANG Y Y, LI X H, DU Z S et al. Spatiotemporal enhancement and interlevel fusion network for remote sensing images change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 3360516(2024).
[2] ZHOU W J, LIU J F, LEI J S et al. GMNet: graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation[J]. IEEE Transactions on Image Processing, 30, 7790-7802(2021).
[3] LI C L, ZHU C L, HUANG Y et al. Cross-modal ranking with soft consistency and noisy labels for robust RGB-T tracking[C], 831-847(2018).
[4] GUPTA P, JAIN N. Anisotropic diffusion filter based fusion of NSST transformed medical images[J]. Biomedical Signal Processing and Control, 90, 105819(2024).
[5] XIE Q Y, MA L, GUO Z Q et al. Infrared and visible image fusion based on NSST and phase consistency adaptive DUAL channel PCNN[J]. Infrared Physics & Technology, 131, 104659(2023).
[6] 袁代玉, 袁丽华, 习腾彦. 潜在低秩表示下的双判别器生成对抗网络的图像融合[J]. 光学 精密工程, 31, 1085-1095(2023).
YUAN D Y, YUAN L H, XI T Y et al. Image fusion of dual-discriminator generative adversarial network and latent low-rank representation[J]. Opt. Precision Eng., 31, 1085-1095(2023).
[7] SUN H, WU S M, MA L J. Adversarial attacks on GAN-based image fusion[J]. Information Fusion, 108, 102389(2024).
[8] ZHANG Z Y, HE C Y, WANG H et al. Fusion of infrared and visible images
[9] LONG ZH L, DENG Y M, XIE J et al. Infrared and visible images fusion based on improved multi-scale structural fusion[J]. Opt. Precision Eng., 32, 1101-1110(2024).
龙志亮, 邓月明, 谢竞. 改进多尺度结构化融合的红外与可见光图像融合[J]. 光学 精密工程, 32, 1101-1110(2024).
[10] XU H, MA J Y, JIANG J J et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2022).
[11] MA J Y, YU W, LIANG P W et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).
[12] LIU J Y, FAN X, HUANG Z B et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C], 18, 5802-5811(2022).
[13] DHARIWAL P, NICHOL A, DHARIWAL P et al. Diffusion models beat GANs on image synthesis[C], 8780-8794(2024).
[14] JAIN A, ABBEEL P et al. Denoising diffusion probabilistic models[C], 6840-6851(2020).
[15] SONG J, MENG CH L, ERMON S. Denoising Diffusion Implicit Models[C](2010).
[16] ROMBACH R, BLATTMANN A, LORENZ D et al. High-resolution image synthesis with latent diffusion models[C], 18, 10684-10695(2022).
[17] ZHAO Z X, BAI H W, ZHU Y Z et al. DDFM: denoising diffusion model for multi-modality image fusion[C], 1, 8082-8093(2023).
[18] VAN AARDT J. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2(2008).
[19] QIU D F, HU X Y, LIANG P W et al. A deep progressive infrared and visible image fusion network[J]. Journal of Image and Graphics, 28, 156-165(2023).
[20] SINGH S, SINGH H, BUENO G et al. A review of image fusion: methods, applications and performance metrics[J]. Digital Signal Processing, 137, 104020(2023).
[21] TANG L F, ZHANG H, XU H et al. Deep learning-based image fusion: a survey[J]. Journal of Image and Graphics, 28, 3-36(2023).
[22] ZHAO W D, WANG D, LU H C. Multi-focus image fusion with a natural enhancement
[23] MANJUSHA D. Udhav bhosale. image fusion and image quality assessment of fused images[J]. International Journal of Image Processing (IJIP), 4, 484(2010).
[24] ZHANG X C, DEMIRIS Y. Visible and infrared image fusion using deep learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 10535-10554(2023).
[25] LI H, WU X J, KITTLER J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 73, 72-86(2021).
[26] ZHANG H, MA J Y. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion[J]. International Journal of Computer Vision, 129, 2761-2785(2021).
[27] ZHAO Z X, BAI H W, ZHANG J S et al. CDDFuse: correlation-driven dual-branch feature decomposition for multi-modality image fusion[C], 17, 5906-5916(2023).
[28] TANG L F, XIANG X Y, ZHANG H et al. DIVFusion: Darkness-free infrared and visible image fusion[J]. Information Fusion, 91, 477-493(2023).
[29] MA J Y, TANG L F, FAN F et al. SwinFusion: cross-domain long-range learning for general image fusion
[30] QIAN Y, LIU G, TANG H J et al. BTSFusion: Fusion of infrared and visible image
Get Citation
Copy Citation Text
Jing DI, Heran WANG, Chan LIANG, Jizhao LIU, Jing LIAN. Conditional diffusion and multi-channel high-low frequency parallel fusion of infrared and visible light images[J]. Optics and Precision Engineering, 2025, 33(1): 148
Category:
Received: Aug. 26, 2024
Accepted: --
Published Online: Apr. 1, 2025
The Author Email: Heran WANG (838129431@qq.com)