Optics and Precision Engineering, Volume. 33, Issue 1, 148(2025)

Conditional diffusion and multi-channel high-low frequency parallel fusion of infrared and visible light images

Jing DI1, Heran WANG1、*, Chan LIANG1, Jizhao LIU2, and Jing LIAN1
Author Affiliations
  • 1School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
  • 2School of Information Science and Engineering, Lanzhou University, Lanzhou730000, China
  • show less
    Figures & Tables(13)
    General network framework based on conditional diffusion and multi-channel high-low frequency parallel fusion
    Multi channel likelihood rectification block
    Detail adaptive denoising block
    Semantics and detail enhancement block
    Adaptive regional consistency fusion block
    Multi channel low frequency feature fusion block
    Fusion results of six scenarios in MSRS dataset
    Fusion results of 'FLIR_05759' scene in RoadScene dataset
    Fusion results of day and night scenes in ablation experiment
    • Table 1. Objective evaluation indicators for nighttime scenes in MSRS dataset '00004N'

      View table
      View in Article

      Table 1. Objective evaluation indicators for nighttime scenes in MSRS dataset '00004N'

      MethodENMIAGSFSSIMPSNRCCVIFF
      RFN-Nest5.701 21.915 93.588 67.301 90.722 222.625 70.902 60.567 7
      SDNet5.657 61.663 26.462 212.254 30.705 122.102 20.895 30.621 8
      U2Fusion5.255 81.135 96.208 114.113 40.727 921.261 60.782 90.354 8
      CDDFuse5.000 42.123 75.082 212.464 10.796 922.076 90.600 60.631 7
      TarDAL5.202 42.451 24.769 07.825 50.629 220.986 60.797 90.234 0
      DIVFusion7.128 12.057 412.004 116.413 40.374 57.288 70.608 50.517 7
      SwinFusion5.855 11.962 26.721 210.190 60.634 822.573 40.894 30.600 5
      DDFM5.343 52.052 34.133 26.457 90.806 722.934 90.821 50.330 8
      BTSFusion5.989 62.088 77.850 214.650 80.826 621.951 90.904 80.656 5
      Ours6.112 92.471 510.129 414.706 80.837 522.967 10.908 10.884 9
    • Table 2. Objective evaluation indicators for daytime scenes in MSRS dataset '00241D '

      View table
      View in Article

      Table 2. Objective evaluation indicators for daytime scenes in MSRS dataset '00241D '

      MethodENMIAGSFSSIMPSNRCCVIFF
      RFN-Nest7.077 52.052 314.292 517.701 40.591 714.636 80.915 30.527 7
      SDNet6.582 4.2.127 523.135 934.406 30.303 613.124 20.916 20.750 3
      U2Fusion6.928 91.754 425.950 241.272 20.608 712.271 10.829 60.410 1
      CDDFuse7.464 22.525 321.759 228.965 80.424 015.845 80.498 60.808 5
      TarDAL6.571 10.881 79.837 512.525 30.546 614.078 80.1280.081 6
      DIVFusion7.661 61.857 921.950 927.648 50.441 212.978 10.869 30.817 0
      SwinFusion7.052 11.658 520.103 625.243 20.364 214.444 20.853 90.489 1
      DDFM6.220 72.439 69.774 413.658 70.645 515.031 10.879 10.260 0
      BTSFusion7.332 41.915 728.704 137.816 80.853 914.854 10.900 30.737 5
      Ours7.708 13.291 027.736 134.514 30.924 115.871 70.968 30.985 6
    • Table 3. Objective evaluation indicators for 'FLIR_0579' in RoadScene dataset

      View table
      View in Article

      Table 3. Objective evaluation indicators for 'FLIR_0579' in RoadScene dataset

      MethodENMIAGSFSSIMPSNRCCVIFF
      RFN-Nest7.534 21.616 510.13513.084 80.712 314.425 00.710 10.666 7
      SDNet7.335 31.373 614.347 217.548 60.716 216.7250.667 80.568 6
      U2Fusion7.437 40.529 518.508 323.046 10.723 012.752 60.672 20.595 2
      CDDFuse7.516 31.927 414.561 720.789 10.677 513.139 20.265 50.605 2
      TarDAL7.570 11.813 310.691 413.364 60.666 716.513 90.623 80.558 5
      DIVFuison7.458 71.688 517.733 523.027 40.678 415.026 70.664 00.662 4
      SwinFusion7.393 71.490 513.204 217.351 10.710 117.351 10.388 30.556 6
      DDFM7.357 50.723 712.292 415.468 90.435 714.483 90.687 50.067 8
      BTSFusion6.607 41.703 418.423 928.190 20.700 815.361 60.614 50.671 0
      Ours7.574 02.394 917.750 221.508 20.754 815.041 40.730 00.674 7
    • Table 4. Mean objective evaluation indicators of 30 images with four different network structures in ablation experiment

      View table
      View in Article

      Table 4. Mean objective evaluation indicators of 30 images with four different network structures in ablation experiment

      NetworkEnMIAGSFSSIMPSNRCCVIFF
      M_LRM+SdeNet6.505 81.349 319.588 625.111 30.642 313.742 70.800 40.642 5
      M_LRM+FuNet6.301 31.66814.567 119.573 30.692 514.658 30.784 70.449 7
      FuNet+SdeNet6.343 11.004 620.033 523.544 70.598 712.705 80.692 00.370 7
      ALL6.776 22.159 520.473 227.175 70.866 517.881 70.813 40.954 2
    Tools

    Get Citation

    Copy Citation Text

    Jing DI, Heran WANG, Chan LIANG, Jizhao LIU, Jing LIAN. Conditional diffusion and multi-channel high-low frequency parallel fusion of infrared and visible light images[J]. Optics and Precision Engineering, 2025, 33(1): 148

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 26, 2024

    Accepted: --

    Published Online: Apr. 1, 2025

    The Author Email: Heran WANG (838129431@qq.com)

    DOI:10.37188/OPE.20253301.0148

    Topics