Journal of Synthetic Crystals, Volume. 50, Issue 5, 831(2021)

Growth Mechanism and Optical Properties of ZrN Films by Magnetron Sputtering

GAO Jie1,2, YAO Weizhen1, YANG Shaoyan1,2, WEI Jie3, LI Chengming1, and WEI Hongyuan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(33)

    [1] [1] HARRISON R W, LEE W E. Processing and properties of ZrC, ZrN and ZrCN ceramics: a review[J]. Advances in Applied Ceramics, 2016, 115(5): 294-307.

    [2] [2] STLING M, NYGREN S, PETERSSON C S, et al. Reactively sputtered ZrN used as an Al/Si diffusion barrier in a Zr contact to silicon[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984, 2(2): 281-283.

    [3] [3] SPILLMANN H, WILLMOTT P R, MORSTEIN M, et al. ZrN, ZrxAlyN and ZrxGayN thin films: novel materials for hard coatings grown using pulsed laser deposition[J]. Applied Physics A, 2001, 73(4): 441-450.

    [4] [4] RUAN J L, LII D F, LU H H, et al. Microstructural and electrical characteristics of reactively sputtered ZrNx thin films[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 671-675.

    [5] [5] TAKEYAMA M B, ITOI T, AOYAGI E, et al. High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems[J]. Applied Surface Science, 2002, 190(1/2/3/4): 450-454.

    [6] [6] LIU Y X, NABATAME T, NGUYEN N, et al. Channel shape and interpoly dielectric material effects on electrical characteristics of floating-gate-type three-dimensional fin channel flash memories[J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DD04.

    [7] [7] VOSS L F, STAFFORD L, KHANNA R, et al. Ohmic contacts to p-type GaN based on TaN, TiN, and ZrN[J]. Applied Physics Letters, 2007, 90(21): 212107.

    [8] [8] SCHLEUSSNER S, KUBART T, TRNDAHL T, et al. Reactively sputtered ZrN for application as reflecting back contact in Cu(In, Ga)Se2 solar cells[J]. Thin Solid Films, 2009, 517(18): 5548-5552.

    [9] [9] BOLTASSEVA A. Empowering plasmonics and metamaterials technology with new material platforms[J]. MRS Bulletin, 2014, 39(5): 461-468.

    [10] [10] LIN S C, ZHANG J, ZHU R H, et al. Effects of sputtering pressure on microstructure and mechanical properties of ZrN films deposited by magnetron sputtering[J]. Materials Research Bulletin, 2018, 105: 231-236.

    [11] [11] LU H P, RAN Y J, ZHAO S J, et al. Effects of assisting ions on the structural and plasmonic properties of ZrNx thin films[J]. Journal of Physics D: Applied Physics, 2019, 52(24): 245102.

    [12] [12] BHATTACHARYA S, MO K, MEI Z G, et al. Improving stability of ALD ZrN thin film coatings over U-Mo dispersion fuel[J]. Applied Surface Science, 2020, 533: 147378.

    [13] [13] BANERJEE M, SRINIVASAN N B, ZHU H Z, et al. Fabrication of ZrO2 and ZrN films by metalorganic chemical vapor deposition employing new Zr precursors[J]. Crystal Growth & Design, 2012, 12(10): 5079-5089.

    [14] [14] GU C Y, SUI Z P, LI Y X, et al. The growth of the metallic ZrNx thin films on P-GaN substrate by pulsed laser deposition[J]. Applied Surface Science, 2018, 433: 306-311.

    [15] [15] YAO Q, LIU W, CUI W B, et al. Growth mechanism and magnetic properties for the out-of-plane-oriented Nd-Fe-B films[J]. Journal of Materials Research, 2009, 24(9): 2802-2812.

    [16] [16] BIRKHOLZ M, GENZEL C, JUNG T. X-ray diffraction study on residual stress and preferred orientation in thin titanium films subjected to a high ion flux during deposition[J]. Journal of Applied Physics, 2004, 96(12): 7202-7211.

    [17] [17] KE Y E, CHEN Y I. Effects of nitrogen flow ratio on structures, bonding characteristics, and mechanical properties of ZrNx films[J]. Coatings, 2020, 10(5): 476.

    [18] [18] MAHIEU S, GHEKIERE P, DEPLA D, et al. Biaxial alignment in sputter deposited thin films[J]. Thin Solid Films, 2006, 515(4): 1229-1249.

    [19] [19] MAHIEU S, GHEKIERE P, DE WINTER G, et al. Mechanism of preferential orientation in sputter deposited titanium nitride and yttria-stabilized zirconia layers[J]. Journal of Crystal Growth, 2005, 279(1/2): 100-109.

    [20] [20] CRACIUN D, VASILE B S, LAMBERS E, et al. Microstructural investigations of 800 keV Ar ions irradiated nanocrystalline ZrN thin films[J]. Surface Engineering, 2020, 36(3): 326-333.

    [21] [21] OH U C, JE J H. Effects of strain energy on the preferred orientation of TiN thin films[J]. Journal of Applied Physics, 1993, 74(3): 1692-1696.

    [22] [22] ABADIAS G. Stress and preferred orientation in nitride-based PVD coatings[J]. Surface and Coatings Technology, 2008, 202(11): 2223-2235.

    [23] [23] MAHMOOD K, BASHIR S, FAIZAN-UL-HAQ, et al. Surface, structural, electrical and mechanical modifications of pulsed laser deposited ZrN thin films by implantation of MeV carbon ions[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2019, 448: 61-69.

    [24] [24] SHANMUGAN S, MUTHARASU D. Effect of Ar+ ion irradiation on structural and optical properties of e-beam evaporated cadmium telluride thin films[J]. Materials Science in Semiconductor Processing, 2010, 13(4): 298-302.

    [25] [25] UL-HAMID A. Microstructure, properties and applications of Zr-carbide, Zr-nitride and Zr-carbonitride coatings: a review[J]. Materials Advances, 2020, 1(5): 1012-1037.

    [27] [27] MAREUS R, MASTAIL C, ANGAY F, et al. Study of columnar growth, texture development and wettability of reactively sputter-deposited TiN, ZrN and HfN thin films at glancing angle incidence[J]. Surface and Coatings Technology, 2020, 399: 126130.

    [28] [28] MUSTAPHA N, FEKKAI Z. Impact of nitrogen reactive gas and substrate temperature on the optical, electrical and structural properties of sputtered TiN thin films[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(22): 20009-20021.

    [29] [29] PATSALAS P, LOGOTHETIDIS S. Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films[J]. Journal of Applied Physics, 2001, 90(9): 4725-4734.

    [30] [30] CHO J S, BAEK S, PARK S H, et al. Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells[J]. Solar Energy Materials and Solar Cells, 2012, 102: 50-57.

    [31] [31] XU Z L, XU X P, CUI C C. Optical functional film with triangular pyramidal texture for crystalline silicon solar cells[J]. Solar Energy, 2020, 201: 45-54.

    [32] [32] ABDULLAH M F, ALGHOUL M A, NASER H, et al. Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell[J]. Renewable and Sustainable Energy Reviews, 2016, 66: 380-398.

    [33] [33] RAWAL S K, CHAWLA A K, CHAWLA V, et al. Effect of ambient gas on structural and optical properties of titanium oxynitride films[J]. Applied Surface Science, 2010, 256(13): 4129-4135.

    [34] [34] CHAWLA A K, SINGHAL S, GUPTA H O, et al. Effect of sputtering gas on structural and optical properties of nanocrystalline tungsten oxide films[J]. Thin Solid Films, 2008, 517(3): 1042-1046.

    Tools

    Get Citation

    Copy Citation Text

    GAO Jie, YAO Weizhen, YANG Shaoyan, WEI Jie, LI Chengming, WEI Hongyuan. Growth Mechanism and Optical Properties of ZrN Films by Magnetron Sputtering[J]. Journal of Synthetic Crystals, 2021, 50(5): 831

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2021

    Accepted: --

    Published Online: Aug. 23, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics