Piezoelectrics & Acoustooptics, Volume. 47, Issue 2, 209(2025)
Simulation and Fabrication of High Figure of Merit S0 Lamb Wave SAW Resonators for the N77 Band
[1] [1] HAGELAUER A, FATTINGER G, RUPPEL C C W, et al. Microwave acoustic wave devices: recent advances on architectures, modeling, materials, and packaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(10): 4548-4562.
[2] [2] RUPPEL C C W. Acoustic wave filter technology-a review[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2017, 64(9): 1390-1400.
[3] [3] HASHIMOTO K, ASANO H, MATSUDA K, et al. Wideband love wave filters operating in GHz range on Cu-grating/rotated-YX-LiNbO3 -substrate structure[C]//Montreal, Canada: IEEE Ultrasonics Symposium, 2004.
[4] [4] KADOTA M, NAKAO T, TANIGUCHI N, et al. Surface acoustic wave duplexer for US personal communication services with good temperature characteristics[J]. Japanese Journal of Applied Physics, 2005, 44(6B): 4527.
[6] [6] LIU Peisen, FU Sulei, SU Rongxuan, et al. Monolithic 1-6-GHz multiband acoustic filters using SH-SAW and LLSAW on LiNbO3/SiO2/SiC platform[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(10): 5653-5666.
[7] [7] KIMURA T, DAIMON K, OGAMI T, et al. S0 mode lamb wave resonators using LiNbO3 thin plate on acoustic multilayer reflector[J]. Japanese Journal of Applied Physics, 2013, 52(7S): 07HD03.
[8] [8] GAO Anming, ZOU Jie, GONG Songbin. A 3.5 GHz hybrid wideband RF filter using AlN S1 Lamb mode resonator[C]//Washington, DC: 2017 IEEE International Ultrasonics Symposium (IUS), 2017.
[9] [9] KUZNETSOVA I E, ZAITSEV B D, JOSHI S G, et al. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2001, 48(1): 322-328.
[10] [10] INOUE S, SOLAL M. LT/quartz layered SAW substrate with suppressed transverse mode generation[C]//Las Vegas, NV: 2020 IEEE International Ultrasonics Symposium (IUS), 2020.
[11] [11] FELD D A, PARKER R, RUBY R, et al. After 60 years: a new formula for computing quality factor is warranted[C]//Beijing, China: 2008 IEEE Ultrasonics Symposium, 2008: 431-436.
[12] [12] KIMURA T, KISHIMOTO Y, OMURA M, et al. 3.5 GHz longitudinal leaky surface acoustic wave resonator using a multilayered waveguide structure for high acoustic energy confinement[J]. Japanese Journal of Applied Physics, 2018, 57: 07LD15.
[13] [13] SU Rongxuan, FU Sulei, XU Huiping, et al. 5.9 GHz longitudinal leaky SAW filter with FBW of 9.2%and IL of 1.8 dB using LN/quartz structure[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(10): 1434-1437.
[14] [14] ZHOU Hongyan, ZHANG Shibin, LI Zhongxu, et al. Surface wave and Lamb wave acoustic devices on heterogenous substrate for 5G front-ends[C]//CA, USA: 2020 IEEE International Electron Devices Meeting (IEDM), 2020.
[15] [15] HAYASHI J, SUZUKI M, YONAI T, et al. Longitudinal leaky surface acoustic wave with low attenuation on LiTaO3 thin plate bonded to quartz substrate[C]//Kobe, Japan: 2018 IEEE International Ultrasonics Symposium (IUS), 2018.
[16] [16] ZHANG Liping, ZHANG Shibin, ZHOU Hongyan, et al. High frequency, low loss and low TCF acoustic devices on LiTaO3-on-SiC substrate[C]//Xi’an, China: 2021 IEEE International Ultrasonics Symposium(IUS), 2021.
[17] [17] LEE Zhiqiang, HSU T H, TSAI C H, et al. L-band LiNbO3/SiO2/Sapphire Longitudinal Leaky Saw(LLSAW) resonators with high figure of merit[C]//Austin, TX, USA: 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems(MEMS), 2024.
Get Citation
Copy Citation Text
CAI Qiao, SHUAI Yao, PENG Bin, WU Chuangui, PAN Xinqiang, ZHANG Wanli. Simulation and Fabrication of High Figure of Merit S0 Lamb Wave SAW Resonators for the N77 Band[J]. Piezoelectrics & Acoustooptics, 2025, 47(2): 209
Received: Dec. 20, 2024
Accepted: Jun. 17, 2025
Published Online: Jun. 17, 2025
The Author Email: