Chinese Journal of Lasers, Volume. 47, Issue 7, 701003(2020)
Single-Mode Semiconductor Nanowire Lasers
[1] Maiman T. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).
[2] Eldada L A. Optical communication components[J]. Review of Scientific Instruments, 75, 575-593(2004).
[3] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54, 197-236(1998).
[5] Miller D A B. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 97, 1166-1185(2009).
[6] Lee Y H, Jewell J L, Scherer A et al. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes[J]. Electronics Letters, 25, 1377-1378(1989).
[7] Yang L, Armani D K, Vahala K J. Fiber-coupled erbium microlasers on a chip[J]. Applied Physics Letters, 83, 825-826(2003).
[8] Painter O, Lee R K, Scherer A et al. Two-dimensional photonic band-gap defect mode laser[J]. Science, 284, 1819-1821(1999).
[9] Cao H, Zhao Y G, Ho S T et al. Random laser action in semiconductor powder[J]. Physical Review Letters, 82, 2278-2281(1999).
[10] Huang M H. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 292, 1897-1899(2001).
[11] Gu F X, Xie F M, Lin X et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering[J]. Light: Science & Applications, 6, e17061(2017).
[12] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).
[13] Tang S K Y, Li Z Y, Abate A R et al. A multi-color fast-switching microfluidic droplet dye laser[J]. Lab on a Chip, 9, 2767-2771(2009).
[15] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 90, 027402(2003).
[18] Smit M, van der Tol J, Hill M. Moore's law in photonics[J]. Laser & Photonics Reviews, 6, 1-13(2012).
[19] Leuthold J, Hoessbacher C, Muehlbrandt S et al. Plasmonic communications:light on a wire[J]. Optics & Photonics News, 24, 28-35(2013).
[20] He L N, Ozdemir Ş K, Zhu J G et al. Detecting single viruses and nanoparticles using whispering gallery microlasers[J]. Nature Nanotechnology, 6, 428-432(2011).
[21] Martino N. Kwok S J J, Liapis A C, et al. Micron-sized laser particles for massively multiplexed cellular labelling and tracking. [C]∥2018 Conference on Lasers and Electro-Optics (CELO), May 13-18, 2018, San Jose, California, United States. Washington: Optical Society of America, JTh5C, 6(2018).
[25] Yang Z Y, Albrow-Owen T, Cui H X et al. Single-nanowire spectrometers[J]. Science, 365, 1017-1020(2019).
[26] Xiao Y, Meng C, Wang P et al. Single-nanowire single-mode laser[J]. Nano Letters, 11, 1122-1126(2011).
[27] Lang X K, Jia P, Chen Y Y et al. Advances in narrow linewidth diode lasers[J]. Science China Information Sciences, 62, 61401(2019).
[28] Duan X F, Huang Y, Agarwal R et al. Single-nanowire electrically driven lasers[J]. Nature, 421, 241-245(2003).
[29] Chu S, Wang G P, Zhou W H et al. Electrically pumped waveguide lasing from ZnO nanowires[J]. Nature Nanotechnology, 6, 506-510(2011).
[30] Li K, Liu X H, Wang Q et al. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature[J]. Nature Nanotechnology, 10, 140-144(2015).
[31] Le B H, Liu X H, Tran N H et al. An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser[J]. Optics Express, 27, 5843-5850(2019).
[32] Ma Y G, Guo X, Wu X Q et al. Semiconductor nanowire lasers[J]. Advances in Optics and Photonics, 5, 216-273(2013).
[33] Eaton S W, Fu A, Wong A B et al. Semiconductor nanowire lasers[J]. Nature Reviews Materials, 1, 16028(2016).
[34] Johnson J C, Yan H Q, Schaller R D et al. Single nanowire lasers[J]. The Journal of Physical Chemistry B, 105, 11387-11390(2001).
[35] Johnson J C, Choi H, Knutsen K P et al. Single gallium nitride nanowire lasers[J]. Nature Materials, 1, 106-110(2002).
[36] Ding J, Zapien J A, Chen W et al. Lasing in ZnS nanowires grown on anodic aluminum oxide templates[J]. Applied Physics Letters, 85, 2361-2363(2004).
[37] Cao B L, Jiang Y, Wang C et al. Synthesis and lasing properties of highly ordered CdS nanowire arrays[J]. Advanced Functional Materials, 17, 1501-1506(2007).
[38] Pan A L, Liu R B, Zhang Q L et al. Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts[J]. Journal of Physical Chemistry C, 111, 14253-14256(2007).
[39] Chin A H, Vaddiraju S, Maslov A V et al. Near-infrared semiconductor subwavelength-wire lasers[J]. Applied Physics Letters, 88, 163115(2006).
[40] Hua B, Motohisa J, Kobayashi Y et al. Single GaAs/GaAsP coaxial core-shell nanowire lasers[J]. Nano Letters, 9, 112-116(2009).
[41] Saxena D, Wang F, Gao Q et al. Mode profiling of semiconductor nanowire lasers[J]. Nano Letters, 15, 5342-5348(2015).
[42] Mayer B, Rudolph D, Schnell J et al. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature[J]. Nature Communications, 4, 2931(2013).
[43] Scofield A C, Kim S H, Shapiro J N et al. Bottom-up photonic crystal lasers[J]. Nano Letters, 11, 5387-5390(2011).
[44] Liu Y K, Zapien J A, Shan Y Y et al. Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons[J]. Advanced Materials, 17, 1372-1377(2005).
[45] Liu Y, Zapien J A, Shan Y et al. Wavelength-tunable lasing in single-crystal CdS1-xSex nanoribbons[J]. Nanotechnology, 18, 365606(2007).
[47] Chen R, Tran T D, Ng K W et al. Nanolasers grown on silicon[J]. Nature Photonics, 5, 170-175(2011).
[48] Pan A L, Liu R B, Sun M H et al. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate[J]. ACS Nano, 4, 671-680(2010).
[49] Johnson J C, Yan H Q, Yang P D et al. Optical cavity effects in ZnO nanowire lasers and waveguides[J]. Journal of Physical Chemistry B, 107, 8816-8828(2003).
[50] Pauzauskie P J, Sirbuly D J, Yang P D. Semiconductor nanowire ring resonator laser[J]. Physical Review Letters, 96, 143903(2006).
[51] Wei W, Liu Y G, Zhang X et al. Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers[J]. Applied Physics Letters, 104, 223103(2014).
[52] Nobis T, Grundmann M. Low-order optical whispering-gallery modes in hexagonal nanocavities[J]. Physical Review A, 72, 063806(2005).
[53] Xu H W, Wright J B, Hurtado A et al. Gold substrate-induced single-mode lasing of GaN nanowires[J]. Applied Physics Letters, 101, 221114(2012).
[54] Xu H W, Wright J B, Luk T S et al. Single-mode lasing of GaN nanowire-pairs[J]. Applied Physics Letters, 101, 113106(2012).
[55] Maslov A V, Ning C Z. Reflection of guided modes in a semiconductor nanowire laser[J]. Applied Physics Letters, 83, 1237-1239(2003).
[56] Maslov A V, Ning C Z. Far-field emission of a semiconductor nanowire laser[J]. Optics Letters, 29, 572-574(2004).
[57] Zimmler M A, Capasso F, Muller S et al. Optically pumped nanowire lasers: invited review[J]. Semiconductor Science and Technology, 25, 024001(2010).
[58] Yang Q, Ding Y, Dai W et al. 47(3): 03SC08[J]. silicon oxide micro-fiber ring knot composite structure laser. Laser & Optoelectronics Progress(2010).
[59] Gradecak S, Qian F, Li Y et al. GaN nanowire lasers with low lasing thresholds[J]. Applied Physics Letters, 87, 173111(2005).
[60] Qian F, Li Y, Gradecak S et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers[J]. Nature Materials, 7, 701-706(2008).
[63] Xu P Z, Liu S, Tang M et al. Highly polarized single mode nanobelt laser[J]. Applied Physics Letters, 110, 201112(2017).
[64] Xu E M, Zhang X L, Zhou L N et al. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops[J]. Optics Letters, 35, 1242-1244(2010).
[65] Xiao Y, Meng C, Wu X Q et al. Single mode lasing in coupled nanowires[J]. Applied Physics Letters, 99, 023109(2011).
[66] Ren D D, Ahtapodov L, Nilsen J S et al. Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature[J]. Nano Letters, 18, 2304-2310(2018).
[67] Wright J B, Campione S, Liu S et al. Distributed feedback gallium nitride nanowire lasers[J]. Applied Physics Letters, 104, 041107(2014).
[68] Yang Y, Zong H, Ma C et al. Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing[J]. Optics Express, 25, 21025-21036(2017).
[69] Yang Y, Wei T T, Zhu R et al. Tunable single-mode lasing in a single semiconductor microrod[J]. Optics Express, 26, 30021-30029(2018).
[70] Kim H, Lee W, Farrell A C et al. Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature[J]. Nano Letters, 17, 3465-3470(2017).
[71] Kim H, Lee W, Farrell A C et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator[J]. Nano Letters, 17, 5244-5250(2017).
[72] Chen L, Towe E. Photonic band gaps in nanowire superlattices[J]. Applied Physics Letters, 87, 103111(2005).
[73] Chen L, Towe E. Nanowire lasers with distributed-Bragg-reflector mirrors[J]. Applied Physics Letters, 89, 053125(2006).
[74] Tatebayashi J, Kako S, Ho J et al. Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for laser applications[J]. Journal of Crystal Growth, 468, 144-148(2017).
[75] Svendsen G K, Weman H, Skaar J. Investigations of Bragg reflectors in nanowire lasers[J]. Journal of Applied Physics, 111, 123102(2012).
[76] Fu A, Gao H W, Petrov P N et al. Widely tunable distributed Bragg reflectors integrated into nanowire waveguides[J]. Nano Letters, 15, 6909-6913(2015).
[77] Barrelet C J, Bao J M, Loncar M et al. Hybrid single-nanowire photonic crystal and microresonator structures[J]. Nano Letters, 6, 11-15(2006).
[78] Lee T P, Burrus C, Wilt D P. Measured spectral linewidth of variable-gap cleaved-coupled-cavity lasers[J]. Electronics Letters, 21, 53-54(1985).
[79] Fan W, Gan J L, Zhang Z S et al. Narrow linewidth single frequency microfiber laser[J]. Optics Letters, 37, 4323-4325(2012).
[80] Ditcovski R, Ellenbogen T. Spectral shaping of lasing in vertically aligned coupled nanowire lasers[J]. Optics Express, 25, 30115-30123(2017).
[81] Zhang C H, Zou C L, Dong H Y et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators[J]. Science Advances, 3, e1700225(2017).
[83] Zhuge M H, Yang Z Y, Zhang J P et al. Fiber-integrated reversibly wavelength-tunable nanowire laser based on nanocavity mode coupling[J]. ACS Nano, 13, 9965-9972(2019).
[84] Moser P, Lott J A, Wolf P et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s[J]. Electronics Letters, 48, 1292-1294(2012).
[85] Qin F F, Xu C X, Zhu Q X et al. Optical performance improvement in hydrothermal ZnO/graphene structures for ultraviolet lasing[J]. Journal of Materials Chemistry C, 6, 3240-3244(2018).
[86] Zhang J Y, Zhang Q F, Deng T S et al. Electrically driven ultraviolet lasing behavior from phosphorus-doped p-ZnO nanonail array/n-Si heterojunction[J]. Applied Physics Letters, 95, 211107(2009).
[89] Zhao S, Liu X H, Wu Y et al. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature[J]. Applied Physics Letters, 109, 191106(2016).
[90] Yang Z L, Pelton M, Fedin I et al. A room temperature continuous-wave nanolaser using colloidal quantum Wells[J]. Nature Communications, 8, 143(2017).
Get Citation
Copy Citation Text
Pian Sijie, Salman Ullah, Yang Qing, Ma Yaoguang. Single-Mode Semiconductor Nanowire Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701003
Special Issue:
Received: Mar. 20, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: