Spectroscopy and Spectral Analysis, Volume. 41, Issue 9, 2879(2021)

Study on the Detection and Discrimination of Damaged Jujube Based on Hyperspectral Data

Rui-rui YUAN1、*, Bing WANG2、*, Gui-shan LIU1、1; *;, Jian-guo HE1、1;, Guo-ling WAN1、1;, Nai-yun FAN1、1;, Yue LI1、1;, and You-rui SUN1、1;
Author Affiliations
  • 11. School of Food & Wine, Ningxia University, Yinchuan 750021, China
  • 22. School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
  • show less
    Figures & Tables(8)
    Damage experimental device of Lingwu long jujube
    Spectra of Lingwu long jujubes(a): Original spectra of all samples; (b): Average spectral curves
    Wavelengths selected by different feature wavelength selection algorithms
    Stability distribution curve of characteristic variables selected by UVE algorithm
    • Table 1. Classification results of PLS-DA of the original and pre-treated spectra

      View table
      View in Article

      Table 1. Classification results of PLS-DA of the original and pre-treated spectra

      Pretreatment
      methods
      Principal
      components
      Calibration set(n=270)Prediction set (n=90)
      CorrectAccuracy/%CorrectAccuracy /%
      None1622482.968190
      SG-11923587.048493.33
      SG-21723285.938796.67
      SNV1822884.448392.22
      SNV-SG-11723085.198392.22
      SNV-SG-21924691.118796.67
      Detrending1823185.568493.33
      Detrending-SG-11723687.418392.22
      Detrending-SG-21723386.308796.67
    • Table 2. Characteristic wavelengths selected by different algorithms

      View table
      View in Article

      Table 2. Characteristic wavelengths selected by different algorithms

      Wavelength selection
      algorithms
      Number of
      wavelengths
      Wavelengths/nm
      SPA23406, 411, 416, 421, 425, 435, 440, 445, 449, 454, 459, 469, 473, 478, 483, 488, 493, 497, 502, 507, 512, 521, 526
      IRF108406~469 (14), 478~526 (11), 536~641 (23), 651~675 (6), 689~862 (37), 901~944 (10), 963~992 (7)
      UVE68406, 411, 421, 425, 430, 440, 445, 449, 459, 469, 473, 483, 493, 497, 502, 507, 512, 517, 521, 531, 541, 545, 565, 569, 574, 589, 593, 598, 603, 608, 613, 617, 622, 632, 641, 670, 680, 694, 704, 709, 713, 723, 733, 737, 757, 761, 771, 795, 805, 814, 819, 829, 833, 838, 843, 862, 872, 877, 891, 906, 920, 934, 939, 949, 958, 973, 978, 987
      VCPA13421, 469, 512, 517, 545, 579, 704, 709, 733, 771, 920, 939, 978
      IVISSA65421, 425, 430, 435, 440, 445, 449, 454, 483, 488, 493, 497, 502, 507, 512, 517, 521, 526, 531, 560, 565, 569, 574, 579, 584, 589, 593, 598, 603, 608, 613, 617, 622, 627, 632, 637, 670, 675, 704, 709, 713, 733, 757, 761, 766, 771, 848, 853, 857, 862, 901, 906, 910, 915, 920, 925, 930, 934, 939, 968, 973, 978, 982, 987, 992
      IRF-SPA17445, 517, 541, 617, 689, 733, 737, 757, 776, 781, 829, 838, 862, 915, 925, 939, 982
      UVE-SPA19473, 502, 517, 541, 603, 608, 622, 641, 733, 737, 795, 805, 843, 862, 891, 920, 949, 973, 987
      IVISSA-SPA15445, 483, 517, 569, 584, 608, 613, 709, 733, 757, 771, 920, 939, 973, 982
    • Table 3. The top 10 intervals of feature variables selected by IRF

      View table
      View in Article

      Table 3. The top 10 intervals of feature variables selected by IRF

      RankingIntervalsRankingIntervals
      16~10674~78
      27~11780~84
      317~2185~9
      419~2398~12
      520~241010~14
    • Table 4. The classification results based on characteristic wavelength

      View table
      View in Article

      Table 4. The classification results based on characteristic wavelength

      ModelCharacteristic
      wavelength
      selection method
      Number of
      characteristic
      wavelengths
      PCsCalibration set (n=270)Prediction set (n=90)
      CorrectAccuracy
      /%
      CorrectAccuracy
      /%
      PLS-DASPA231922482.967785.56
      IRF1081723285.938594.44
      UVE681623386.308594.44
      VCPA131220475.566774.44
      IVISSA651722984.818291.11
      IRF-SPA171220475.566774.44
      UVE-SPA191420877.047785.56
      IVISSA-SPA151219772.967077.78
      LDASPA23-23386.307583.33
      IRF108-----
      UVE68-----
      VCPA13-21178.156066.67
      IVISSA65-----
      IRF-SPA17-20877.046370
      UVE-SPA19-22081.486370
      IVISSA-SPA15-19471.855864.44
      SVMSPA23-20074.076572.22
      IRF108-19873.336572.22
      UVE68-21077.786471.11
      VCPA13-16661.484752.22
      IVISSA65-20877.046471.11
      IRF-SPA17-17163.334550
      UVE-SPA19-14854.814550
      IVISSA-SPA15-11241.483134.44
    Tools

    Get Citation

    Copy Citation Text

    Rui-rui YUAN, Bing WANG, Gui-shan LIU, Jian-guo HE, Guo-ling WAN, Nai-yun FAN, Yue LI, You-rui SUN. Study on the Detection and Discrimination of Damaged Jujube Based on Hyperspectral Data[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2879

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 13, 2020

    Accepted: --

    Published Online: Oct. 29, 2021

    The Author Email: YUAN Rui-rui (wb731618660@163.com)

    DOI:10.3964/j.issn.1000-0593(2021)09-2879-07

    Topics