Journal of Synthetic Crystals, Volume. 54, Issue 7, 1146(2025)
Research Progress on Defects in CsPbBr3 Crystals for Radiation Detectors
[1] ZHU S F, ZHAO B J, WANG R L et al. Studies of new materials and devices for room-temperature nuclear radiation detectors. Journal of Synthetic Crystals, 33, 6-12(2004).
[2] LI X, CHU J H, LI L X et al. Development of room temperature CdZnTe nuclear radiation detector. Semiconductor Technology, 33, 941-946(2008).
[3] RAHMAN R, PLATER A J, NOLAN P J et al. Assessing CZT detector performance for environmental radioactivity investigations. Radiation Protection Dosimetry, 154, 477-482(2013).
[4] GITS S, AUTHIER A. Plastic defects in α-HgI2 single crystals. Journal of Crystal Growth, 58, 473-485(1982).
[5] MANFREDOTTI C, MURRI R, QUIRINI A et al. PbI2 as nuclear particle detector. IEEE Transactions on Nuclear Science, 24, 126-128(1977).
[6] ONODERA T, HITOMI K, SHOJI T. Spectroscopic performance and long-term stability of thallium bromide radiation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 568, 433-436(2006).
[7] CHU M R, TERTERIAN S, TING D et al. Effects of p/n inhomogeneity on CdZnTe radiation detectors, 237(2003).
[8] VERGER L, BONNEFOY J P, GLASSER F et al. New developments in CdTe and CdZnTe detectors for X and γ-ray applications. Journal of Electronic Materials, 26, 738-744(1997).
[9] LOCKER M, FISCHER P, KRIMMEL S et al. Single photon counting X-ray imaging with Si and CdTe single chip pixel detectors and multichip pixel modules. IEEE Transactions on Nuclear Science, 51, 1717-1723(2004).
[10] SONG Y L, LI L Q, HAO M W et al. Elimination of interfacial-electrochemical-reaction-induced polarization in perovskite single crystals for ultrasensitive and stable X-ray detector arrays. Advanced Materials, 33, 2103078(2021).
[11] SAKHATSKYI K, TUREDI B, MATT G J et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity. Nature Photonics, 17, 510-517(2023).
[12] SCHIEBER M, HERMON H, ZUCK A et al. Theoretical and experimental sensitivity to X-rays of single and polycrystalline HgI2 compared with different single-crystal detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 458, 41-46(2001).
[13] WEI H T, DESANTIS D, WEI W et al. Dopant compensation in alloyed CH3NH3PbBr3-x Cl x perovskite single crystals for gamma-ray spectroscopy. Nature Materials, 16, 826-833(2017).
[14] FENG Y X, PAN L, WEI H T et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection. Journal of Materials Chemistry C, 8, 11360-11368(2020).
[15] PAN L, FENG Y X, KANDLAKUNTA P et al. Performance of perovskite CsPbBr3 single crystal detector for gamma-ray detection. IEEE Transactions on Nuclear Science, 67, 443-449(2020).
[16] HE Y H, MATEI L, JUNG H J et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications, 9, 1609(2018).
[17] HE Y H, LIU Z F, MCCALL K M et al. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 922, 217-221(2019).
[18] HE Y H, PETRYK M, LIU Z F et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nature Photonics, 15, 36-42(2020).
[19] ZHAO L, ZHOU Y, SHI Z F et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy. Nature Photonics, 17, 315-323(2023).
[20] JIN T, LIU Y T, XIONG Y et al. Enhancing high-voltage stability of CsPbBr₃ radiation detectors through surface treatment and electrode replacement. IEEE Electron Device Letters, 44, 1620-1623(2023).
[21] ZHAO L, SHI Z F, ZHOU Y et al. Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices. Nature Photonics, 18, 250-257(2024).
[22] LIU X, XU M, HAO Y Y et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature. ACS Applied Materials & Interfaces, 13, 15383-15390(2021).
[23] STOUMPOS C C, MALLIAKAS C D, PETERS J A et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design, 13, 2722-2727(2013).
[24] DIRIN D N, CHERNIUKH I, YAKUNIN S et al. Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chemistry of Materials, 28, 8470-8474(2016).
[25] PAN W C, YANG B, NIU G D et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Advanced Materials, 31, 1904405(2019).
[26] GOU Z Y, HUANGLONG S B, KE W J et al. Self-powered X-ray detector based on all-inorganic perovskite thick film with high sensitivity under low dose rate. Physica Status Solidi (RRL)-Rapid Research Letters, 13, 1900094(2019).
[27] MATT G J, LEVCHUK I, KNÜTTEL J et al. Sensitive direct converting X-ray detectors utilizing crystalline CsPbBr3 perovskite films fabricated via scalable melt processing. Advanced Materials Interfaces, 7, 1901575(2020).
[28] DU X Y, LIU Y M, PAN W C et al. Chemical potential diagram guided rational tuning of electrical properties: a case study of CsPbBr3 for X-ray detection. Advanced Materials, 34, 2110252(2022).
[29] CHEN S X, LIU W W, XU M et al. Electrospray prepared flexible CsPbBr3 perovskite film for efficient X-ray detection. Journal of Materials Chemistry C, 11, 8431-8437(2023).
[30] LIU Y L, GAO C S, LI D et al. Dynamic X-ray imaging with screen-printed perovskite CMOS array. Nature Communications, 15, 1588(2024).
[31] XU Q, WANG X, ZHANG H et al. CsPbBr3 single crystal X-ray detector with Schottky barrier for X-ray imaging application. ACS Applied Electronic Materials, 2, 879-884(2020).
[32] ZHANG H J, WANG F B, LU Y F et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals. Journal of Materials Chemistry C, 8, 1248-1256(2020).
[33] PENG J L, XIA C Q, XU Y L et al. Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nature Communications, 12, 1531(2021).
[34] DI J Y, LI H J, SU J et al. Reveal the humidity effect on the phase pure CsPbBr3 single crystals formation at room temperature and its application for ultrahigh sensitive X-ray detector. Advanced Science, 9, 2103482(2022).
[35] HE Y H, HADAR I, DE SIENA M C et al. Sensitivity and detection limit of spectroscopic-grade perovskite CsPbBr3 crystal for hard X-ray detection. Advanced Functional Materials, 32, 2112925(2022).
[36] HUA Y Q, SUN X, LI X et al. Anisotropic X-ray detection performance of melt-grown CsPbBr3 single crystals. Journal of Materials Chemistry C, 11, 9153-9160(2023).
[37] PAN L, LIU Z F, WELTON C et al. Ultrahigh-flux X-ray detection by a solution-grown perovskite CsPbBr3 single-crystal semiconductor detector. Advanced Materials, 35, 2211840(2023).
[38] SHI R X, PI J C, CHU D P et al. Promoting band splitting through symmetry breaking in inorganic halide perovskite single crystals for high-sensitivity X-ray detection. ACS Energy Letters, 8, 4836-4847(2023).
[39] XUE Z X, WEI Y R, LI H et al. Additive-enhanced crystallization of inorganic perovskite single crystals for high-sensitivity X-ray detection. Small, 19, 2207588(2023).
[40] HUA Y Q, ZHANG G D, SUN X et al. Suppressed ion migration for high-performance X-ray detectors based on atmosphere-controlled EFG-grown perovskite CsPbBr3 single crystals. Nature Photonics, 18, 870-877(2024).
[41] ZHAO X, WANG S M, SONG Y N et al. Freezing non-radiative recombination in high-performance CsPbBr3 single crystal X-ray detector. Applied Physics Letters, 125(2024).
[42] PAN L, FENG Y X, HUANG J S et al. Comparison of Zr, Bi, Ti, and Ga as metal contacts in inorganic perovskite CsPbBr₃ gamma-ray detector. IEEE Transactions on Nuclear Science, 67, 2255-2262(2020).
[43] HAO Y Y, LI F P, BAI R C et al. Investigation of LiF interlayer on charge collection efficiency and leakage current in CsPbBr3 radiation detector. IEEE Transactions on Electron Devices, 69, 6837-6842(2022).
[44] PAN L, HE Y H, KLEPOV V V et al. Perovskite CsPbBr3 single crystal detector for high flux X-ray photon counting. IEEE Transactions on Medical Imaging, 41, 3053-3061(2022).
[45] TOUFANIAN R, SWAIN S, BECLA P et al. Cesium lead bromide semiconductor radiation detectors: crystal growth, detector performance and polarization. Journal of Materials Chemistry C, 10, 12708-12714(2022).
[46] WANG F B, BAI R C, SUN Q H et al. Precursor engineering for solution method-grown spectroscopy-grade CsPbBr3 crystals with high energy resolution. Chemistry of Materials, 34, 3993-4000(2022).
[47] ZHANG M Z, YANG Y T, XIA G T et al. Metal-semiconductor-metal-nanostructured CsPbBr3 crystal detector for long-term stable α-particle detection. ACS Applied Nano Materials, 5, 16039-16044(2022).
[48] ZHANG X, LI F P, BAI R C et al. Investigation on energy resolution of CsPbBr3 detectors: from charge transport behavior to device configuration. Journal of Materials Chemistry C, 10, 6017-6024(2022).
[49] DE SIENA M C, KLEPOV V V, STEPANOFF S P et al. Extreme γ-ray radiation tolerance of spectrometer-grade CsPbBr3 perovskite detectors. Advanced Materials, 35, 2303244(2023).
[50] KLEPOV V V, DE SIENA M C, PANDEY I R et al. Laser scribing for electrode patterning of perovskite spectrometer-grade CsPbBr3 gamma-ray detectors. ACS Applied Materials & Interfaces, 15, 16895-16901(2023).
[51] PAN L, PANDEY I R, MICELI A et al. Perovskite CsPbBr3 single-crystal detector operating at 1010 photons·s-1·mm-2 for ultra-high flux X-ray detection. Advanced Optical Materials, 11, 2202946(2023).
[52] SUN Q H, GE B Z, XIAO B et al. High-performance industrial-grade CsPbBr3 single crystal by solid-liquid interface engineering. Advanced Science, 10, 2302236(2023).
[53] ZHANG X, LI F P, HAO Y Y et al. Improved energy resolution by weighting potential optimization in CsPbBr3 pixelated gamma-ray detector. IEEE Transactions on Electron Devices, 70, 5190-5195(2023).
[54] ZHANG M Z, HUANG C T, XIA G T et al. Study on the vertical Bridgman method of melt-grown CsPbBr3 single crystals for nuclear radiation detection. Acta Crystallographica Section B, 80, 64-71(2024).
[55] BAI R C, GE B Z, LIU X et al. Kinetic modulation-eliminated precursor liquid inclusions in solution-grown CsPbBr3 bulk crystals for gamma-ray detection. Journal of Materials Chemistry A, 12, 13925-13932(2024).
[56] CHUNG D Y, LIN W W, UNAL M et al. Growth of high-purity CsPbBr3 crystals for enhanced gamma-ray detection. Crystal Growth and Design, 24, 9590-9600(2024).
[57] HAO Y Y, BAI R C, ZHANG X et al. Insight into the high-voltage stability of perovskite ionizing radiation detector: from interfacial reaction to performance degradation. Applied Physics Letters, 125, 102106(2024).
[58] PAN L, BAYIKADI K S, PANDEY I R et al. Ion migration enhances the performance of perovskite CsPbBr3 γ-ray detectors. Advanced Materials Technologies, 10, 2401548(2025).
[59] ZHANG X, BAI R C, FU Y H et al. High energy resolution CsPbBr3 alpha particle detector with a full-customized readout application specific integrated circuit. Nature Communications, 15, 6333(2024).
[60] SHEN N N, GAO T T, OUYANG X et al. Enhancing gamma-ray spectral resolution in perovskite CsPbBr3 detectors through dark current reduction with guard ring electrodes. ACS Photonics, 11, 3662-3671(2024).
[61] GRUNDMANIS N, SARAKOVSKIS A, LUPILOV A et al. The X- and gamma-ray detection properties of CsPbBr3 perovskite crystals grown by the Bridgman-Stockbarger method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1073, 170305(2025).
[62] QIN H M, XIAO B, HE X C et al. Virtual Frisch grid perovskite CsPbBr3 semiconductor with 2.2-centimeter thickness for high energy resolution gamma-ray spectrometer. Nature Communications, 16, 158(2025).
[63] WANG F B, ZHANG H J, SUN Q H et al. Low-temperature solution growth and characterization of halogen (Cl, I)-doped CsPbBr3 crystals. Crystal Growth & Design, 20, 1638-1645(2020).
[64] ZHANG H J, LIU X, DONG J P et al. Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method. Crystal Growth & Design, 17, 6426-6431(2017).
[65] ZHANG P, ZHANG G D, LIU L et al. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal. The Journal of Physical Chemistry Letters, 9, 5040-5046(2018).
[66] ZHANG P, SUN Q H, XU Y D et al. Enhancing carrier transport properties of melt-grown CsPbBr3 single crystals by eliminating inclusions. Crystal Growth & Design, 20, 2424-2431(2020).
[67] YAFFE O, GUO Y S, TAN L Z et al. Local polar fluctuations in lead halide perovskite crystals. Physical Review Letters, 118, 136001(2017).
[68] PUPPIN M, POLISHCHUK S, COLONNA N et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Physical Review Letters, 124, 206402(2020).
[69] KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3. The Journal of Physical Chemistry Letters, 8, 489-493(2017).
[70] ZHANG M Z, ZHENG Z P, FU Q Y et al. Determination of defect levels in melt-grown all-inorganic perovskite CsPbBr3 crystals by thermally stimulated current spectra. The Journal of Physical Chemistry C, 122, 10309-10315(2018).
[71] ZHANG B-B, WANG F B, LIU X et al. Ion migration controlled stability in α-particle response of CsPbBr2.4Cl0.6 detectors. The Journal of Physical Chemistry C, 125, 4235-4242(2021).
[72] ZHANG B B, WANG F B, ZHANG H J et al. Defect proliferation in CsPbBr3 crystal induced by ion migration. Applied Physics Letters, 116(2020).
[73] LI F P, PENG W B, ZHANG X et al. On the photoresponse regulations by deep-level traps in CsPbBr3 single crystal photodetectors. Semiconductor Science Technology, 38(2023).
[74] ZHANG X L, WANG F B, ZHANG B B et al. Ferroelastic domains in a CsPbBr3 single crystal and their phase transition characteristics: an in situ TEM study. Crystal Growth & Design, 20, 4585-4592(2020).
[75] HIROTSU S, HARADA J, IIZUMI M et al. Structural phase transitions in CsPbBr3. Journal of the Physical Society of Japan, 37, 1393-1398(1974).
[76] ZHANG X L, ZHAO D, LIU X et al. Ferroelastic domains enhanced the photoelectric response in a CsPbBr3 single-crystal film detector. The Journal of Physical Chemistry Letters, 12, 8685-8691(2021).
[77] CHENG Y B, SUN Q H, ZHANG P et al. Secondary phase particles in cesium lead bromide perovskite crystals: an insight into the formation of matrix-controlled inclusion. The Journal of Physical Chemistry Letters, 11, 5625-5631(2020).
[78] CHENG Y B, ZHU M H, WANG F B et al. Precursor solution-dependent secondary phase defects in CsPbBr3 single crystal grown by inverse temperature crystallization. Journal of Materials Chemistry A, 9, 27718-27726(2021).
Get Citation
Copy Citation Text
Ning LI, Xinlei ZHANG, Bao XIAO, Binbin ZHANG. Research Progress on Defects in CsPbBr3 Crystals for Radiation Detectors[J]. Journal of Synthetic Crystals, 2025, 54(7): 1146
Category:
Received: Mar. 21, 2025
Accepted: --
Published Online: Aug. 28, 2025
The Author Email: Bao XIAO (fsnhxiaobao@163.com), Binbin ZHANG (zbb@nwpu.edu.cn)