Optics and Precision Engineering, Volume. 33, Issue 10, 1672(2025)
Ultra lightweight SAR image small object detection network
[1] XU F, LIU J H, SUN H et al. Research progress on vessel detection using optical remote sensing image[J]. Opt. Precision Eng., 29, 916-931(2021).
徐芳, 刘晶红, 孙辉. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 29, 916-931(2021).
[3] YANG R, PAN Z R, JIA X X et al. A novel CNN-based detector for ship detection based on rotatable bounding box in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1938-1958(2021).
[4] CUI Z Y, WANG X Y, LIU N Y et al. Ship detection in large-scale SAR images
[5] PU H, ZHU Z W, HU Q et al. Ulit-BiDet: an ultralightweight object detector for SAR images based on binary neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-21(2024).
[6] WANG Z W, LU J W, WU Z Y et al. Learning efficient binarized object detectors with information compression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 3082-3095(2022).
[7] GE ZH, LIU S T, WANG F et al. YOLOX: Exceeding YOLO series in 2021[C], 13039-13048(2021).
[9] ZHOU L, WEI S Y, CUI Z M et al. Lira-YOLO: a lightweight model for ship detection in radar images[J]. Journal of Systems Engineering and Electronics, 31, 950-956(2020).
[10] LI Y D, ZHANG S S, WANG W Q. A lightweight faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 19, 4006105(2020).
[11] GAO G, LIU L, ZHAO L J et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 1685-1697(2009).
[12] WANG Y H, LIU H W. A hierarchical ship detection scheme for high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 50, 4173-4184(2012).
[13] HUO W B, HUANG Y L, PEI J F et al. Ship detection from ocean SAR image based on local contrast variance weighted information entropy[J]. Sensors, 18, 1196(2018).
[14] 张鹏, 张嘉峰, 刘涛. 基于相干度优化的极化顺轨干涉SAR慢小目标CFAR检测[J]. 北京航空航天大学学报, 45, 575-587(2019).
ZHANG P, ZHANG J F, LIU T. Slow and small target CFAR detection of polarimetric along-track interferometric SAR using coherence optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 45, 575-587(2019).
[15] 黄泽贤, 吴凡路, 傅瑶. 基于深度学习的遥感图像舰船目标检测算法综述[J]. 光学 精密工程, 31, 2295-2318(2023).
HUANG Z X, WU F L, FU Y et al. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Opt. Precision Eng., 31, 2295-2318(2023).
[16] GUO Q, LIU J N, KALIUZHNYI M. YOLOX-SAR: high-precision object detection system based on visible and infrared sensors for SAR remote sensing[J]. IEEE Sensors Journal, 22, 17243-17253(2022).
[17] LI Y X, REN F B. Light-weight retinanet for object detection on edge devices[C], 2, 1-6(2020).
[18] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318-327(2020).
[19] YANG X, ZHANG X, WANG N N et al. A robust one-stage detector for multiscale ship detection with complex background in massive SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5217712(2021).
[20] YANG X, ZHANG J N, CHEN C Z et al. An efficient and lightweight CNN model with soft quantification for ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5230713(2022).
[21] ZHOU Z, CHEN J, HUANG Z X et al. FSODS: a lightweight metalearning method for few-shot object detection on SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5232217(2022).
[22] XIE H T, JIANG X Q, WANG G Q et al. Lightweight and anchor-free frame method of multiscale ship detection based on improved CenterNet in SAR images[J]. Journal of Harbin Engineering University, 45, 504-516(2024).
谢洪途, 姜新桥, 王国倩. 基于改进CenterNet的轻量级无锚框SAR图像多尺度舰船检测算法[J]. 哈尔滨工程大学学报, 45, 504-516(2024).
[23] GONG J Y, FU W H, FANG H Z. Research on lightweight and feature enhancement of SAR image ship targets detection[J]. Journal of Xidian University, 51, 96-106(2024).
龚峻扬, 付卫红, 方厚章. SAR图像舰船目标检测的轻量化和特征增强研究[J]. 西安电子科技大学学报, 51, 96-106(2024).
[24] CHEN C X, ZHANG Y M, HU R L et al. A lightweight SAR ship detector using end-to-end image preprocessing network and channel feature guided spatial pyramid pooling[J]. IEEE Geoscience and Remote Sensing Letters, 21, 4003605(2024).
[25] LU T Y, XU Z, CUI H Y et al. Design of embedded real-time large size SAR image ship detection system[J]. Computer Engineering and Applications, 60, 301-309(2024).
陆天宇, 徐湛, 崔红元. 大幅宽SAR图像嵌入式舰船实时检测系统设计[J]. 计算机工程与应用, 60, 301-309(2024).
[26] YIN J, WANG W, GUO Z H et al. DTS: dynamic training slimming with feature sparsity for efficient convolutional neural network[J]. Journal of Real-Time Image Processing, 21, 128(2024).
[27] WANG J L, CUI Z Y, JIANG T et al. Lightweight deep neural networks for ship target detection in SAR imagery[J]. IEEE Transactions on Image Processing, 32, 565-579(2023).
[28] 郝帅, 吴瑛琦, 马旭. 融合知识蒸馏和注意力机制的光伏热斑检测[J]. 光学 精密工程, 31, 3640-3650(2023).
HAO S, WU Y Q, MA X et al. Photovoltaic hot spot detection method incorporating knowledge distillation and attention mechanisms[J]. Opt. Precision Eng., 31, 3640-3650(2023).
[29] WANG C, RUAN R, ZHAO Z C et al. Category-oriented localization distillation for SAR object detection and a unified benchmark[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 5211314(2023).
[30] CHEN S Q, ZHAN R H, WANG W et al. Learning slimming SAR ship object detector through network pruning and knowledge distillation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1267-1282(2020).
[31] PARK J[M]. Prune Your Model Before Distill It, 120-136(2022).
[32] HAN K, WANG Y H, TIAN Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).
[33] CHEN Z X, HE Z W, LU Z M. DEA-net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 33, 1002-1015(2024).
[34] 陈杰, 黄志祥, 夏润繁. 大规模多类SAR目标检测数据集-[J]. 2022: 雷达学报(1).
[35] WANG Y Y, WANG C, ZHANG H et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 11, 765(2019).
[36] SUN X, WANG Z R, SUN Y R et al. AIR-SARShip-1.0: high-resolution SAR ship detection dataset[J]. Journal of Radars, 8, 852-862(2019).
孙显, 王智睿, 孙元睿. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 8, 852-862(2019).
[37] LI J W, QU C W, SHAO J Q. Ship detection in sar images based on an improved faster R-CNN[C], 1-6(2017).
[38] WEI S J, ZENG X F, QU Q Z et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 8, 120234-120254(2020).
[39] GUO H Y, YANG X, WANG N N et al. A CenterNet++ model for ship detection in SAR images[J]. Pattern Recognition, 112, 107787(2021).
[40] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C], 6154-6162(2018).
[41] HUANG Z J, HUANG L C, GONG Y C et al. Mask scoring R-CNN[C], 15, 2019(2019).
[42] CHEN K, PANG J M, WANG J Q et al. Hybrid task cascade for instance segmentation[C], 4969-4978(2019).
Get Citation
Copy Citation Text
Xiaomin YANG, Jun YANG. Ultra lightweight SAR image small object detection network[J]. Optics and Precision Engineering, 2025, 33(10): 1672
Category:
Received: Nov. 4, 2024
Accepted: --
Published Online: Jul. 23, 2025
The Author Email: