Optics and Precision Engineering, Volume. 33, Issue 10, 1672(2025)

Ultra lightweight SAR image small object detection network

Xiaomin YANG1,3,4 and Jun YANG1,2,3,4、*
Author Affiliations
  • 1Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou730070, China
  • 2School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
  • 3National and Local Joint Engineering Research Center of Geographical Monitoring Technology Application, Lanzhou70070, China
  • 4Gansu Provincial Engineering Laboratory of Geographical Monitoring, Lanzhou730070, China
  • show less
    Figures & Tables(18)
    Ultra lightweight framework for small object detection in SAR images
    Architecture framework of improved baseline network
    Structure of MELA module
    Structure of MBConv
    Structural details of DESD-Head
    Visual comparison of "mAP-FPS-model size"
    Visual comparison of various methods on the MSAR dataset
    Object detection effect of the proposed method in large scale scenarios
    Visual comparison of object detection results using various methods on multiple ship datasets
    • Table 1. Object size distribution in the dataset

      View table
      View in Article

      Table 1. Object size distribution in the dataset

      数据集目标总数小尺寸中尺寸大尺寸
      目标数量占比/%目标数量占比/%目标数量占比/%
      MSAR60 39856 56293.653 0665.087701.27
      SAR-Ship50 88548 83195.972 0023.93520.10
      AIR-SARShip-2.02 0402 01698.82231.1310.05
      SSDD32225177.956821.1230.93
      HRSID16 95016 85899.46830.4990.05
    • Table 2. Detection performance of DESD-Head on SSDD dataset

      View table
      View in Article

      Table 2. Detection performance of DESD-Head on SSDD dataset

      网络模型DESD-HeadFLOPs/GParams/MFPSmAP/%APS/%APM/%APL/%
      YOLOv8-n×8.0893.007265.498.363.975.373.2
      YOLOv8-n6.525(↓19.33%)2.362(↓21.45%)274.2(↑3.21%)98.064.373.574.4
      YOLOv10-N×6.5322.266178.997.661.773.264.7
      YOLOv10-N6.300(↓3.55%)1.947(↓14.08%)188.5(↑5.09%)97.465.873.871.0
    • Table 3. Lightweight effect under different pruning ratios on the MSAR dataset

      View table
      View in Article

      Table 3. Lightweight effect under different pruning ratios on the MSAR dataset

      网络模型剪枝比例FLOPs/GParams/MmAP/%APS/%APM/%APL/%
      基线-8.0893.00784.670.680.169.1
      M+D0%5.2911.94486.675.083.271.8
      M+D10%4.7241.04185.874.182.363.5
      M+D20%4.1860.88883.272.581.068.3
      M+D30%3.6610.74278.969.578.458.7
      M+D40%3.1490.59680.666.277.066.3
    • Table 4. Performance improvement results of student networks with different pruning ratios after distillation on the MSAR dataset

      View table
      View in Article

      Table 4. Performance improvement results of student networks with different pruning ratios after distillation on the MSAR dataset

      学生网络教师网络FLOPs/GParams/MmAP/%APS/%APM/%APL/%

      10%剪枝的M+D

      (mAP 85.8)

      YOLOv8-n4.7241.04186.1(↑0.3)75.182.773.1
      YOLOv8-s87.8(↑2.0)75.183.775.9
      YOLOv8-m89.4(↑3.6)76.185.178.3
      YOLOv8-l87.7(↑1.9)74.784.076.2
      YOLOv8-x86.9(↑1.1)74.583.373.4

      20%剪枝的M+D

      (mAP 83.2)

      YOLOv8-n4.1860.88886.9(↑3.7)73.782.570.6
      YOLOv8-s89.0(↑5.8)75.785.178.1
      YOLOv8-m85.7(↑2.5)73.482.879.4
      YOLOv8-l84.1(↑1.9)73.381.275.0
      YOLOv8-x83.8(↑0.6)72.480.574.4

      30%剪枝的M+D

      (mAP 78.9)

      YOLOv8-n3.6610.74281.1(↑2.9)65.976.781.1
      YOLOv8-s80.4(↑1.5)67.077.980.4
      YOLOv8-m80.6(↑1.7)66.277.980.6
      YOLOv8-l80.0(↑1.1)65.776.179.6
      YOLOv8-x78.5(↓0.4)62.872.074.4

      40%剪枝的M+D

      (mAP 80.6)

      YOLOv8-n3.1490.59680.4(↓0.2)65.476.468.5
      YOLOv8-s80.3(↓0.3)65.577.770.0
      YOLOv8-m76.9(↓3.7)61.373.963.0
      YOLOv8-l76.5(↓4.1)62.672.362.9
      YOLOv8-x75.7(↓4.9)60.670.361.1
    • Table 5. Ablation experiments on the MSAR dataset

      View table
      View in Article

      Table 5. Ablation experiments on the MSAR dataset

      网络

      模型

      MELA

      DESD-

      Head

      剪枝蒸馏FLOPs/GParams/M

      FPS/

      (frame·s-1

      mAP/%APS/%APM/%APL/%
      Model-1××××8.0893.007263.584.670.680.169.1
      Model-2×××6.0512.198270.882.066.577.161.5
      Model-3×××6.5252.362230.289.678.086.274.8
      Model-4××5.2911.944231.986.675.083.271.8
      Model-5×4.1860.888250.383.272.581.068.3
      Model-64.1860.888279.789.075.785.178.1
    • Table 6. Performance comparison results of different SAR images object detection methods on MSAR dataset

      View table
      View in Article

      Table 6. Performance comparison results of different SAR images object detection methods on MSAR dataset

      网络模型FLOPs/GParams/MFPS/(frame·s-1mAP/%APS/%APM/%APL/%
      YOLOv5-n4.1301.761125.080.873.974.480.7
      YOLOv7103.22336.50196.286.774.485.981.6
      YOLOv7-tiny13.0226.007109.968.962.972.361.0
      YOLOv8-n8.0893.007263.584.670.680.169.1
      YOLOv9-T7.5991.97142.577.671.280.577.8
      YOLOv10-N6.5322.266228.283.165.775.752.7
      RT-DETR(r18)57.29018.86036.776.851.471.155.4
      本文方法4.1860.888279.789.075.785.178.1
    • Table 7. Detection accuracy of various types of targets using different methods on the MSAR dataset

      View table
      View in Article

      Table 7. Detection accuracy of various types of targets using different methods on the MSAR dataset

      网络模型飞机油罐桥梁船只
      YOLOv5-n93.883.874.671.0
      YOLOv794.092.288.871.7
      YOLOv7-tiny88.485.946.954.4
      YOLOv8-n90.282.985.979.5
      YOLOv9-T88.487.567.966.5
      YOLOv10-N86.783.781.980.2
      RT-DETR(r18)96.579.677.354.0
      本文方法97.087.388.083.7
    • Table 8. Object detection results of different methods on SAR-Ship and AIR-SARShip-2.0 datasets

      View table
      View in Article

      Table 8. Object detection results of different methods on SAR-Ship and AIR-SARShip-2.0 datasets

      网络模型FLOPs/GParams/MSAR-ShipAIR-SARShip-2.0
      FPSmAP/%FPSmAP/%
      YOLOv5-n4.11.8259.897.7257.167.8
      YOLOv7103.236.580.294.783.063.0
      YOLOv7-tiny13.06.0264.596.8256.570.3
      YOLOv8-n8.13.0259.997.7263.375.7
      YOLOv9-T10.72.669.594.770.274.2
      YOLOv10-N6.52.3168.893.1201.764.5
      RT-DETR(r18)56.918.858.695.360.751.8
      CenterNet++3989.420.352.394.948.473.9
      GhostNet328.73.6204.191.7199.949.0
      Quant-Det209.53.2213.295.7208.577.0
      本文方法4.20.9281.398.1283.582.5
    • Table 9. Object detection results of different methods on SSDD and HRSID datasets

      View table
      View in Article

      Table 9. Object detection results of different methods on SSDD and HRSID datasets

      网络模型

      FLOPs

      /G

      Params

      /M

      SSDDHRSID
      FPS

      mAP

      /%

      APS

      /%

      APM

      /%

      APL

      /%

      FPS

      mAP

      /%

      APS

      /%

      APM

      /%

      APL

      /%

      Cascade R-CNN40152.255.69.693.154.867.157.810.087.767.567.728.8
      Mask Scoring R-CNN41206.748.113.494.755.665.351.212.687.665.365.822.2
      Hybrid Task Cascade42278.569.36.394.555.968.459.27.887.769.071.238.1
      RetinaNet18114.842.731.990.251.262.645.433.784.760.960.926.8
      YOLOv5-n4.11.8254.297.262.174.669.1256.690.350.073.565.7
      YOLOv7103.236.580.994.564.277.579.482.887.747.773.457.9
      YOLOv7-tiny13.06.0263.696.262.778.472.0262.387.045.371.557.2
      YOLOv8-n8.13.0265.498.363.975.373.2265.289.851.076.852.3
      YOLOv9-T10.72.672.697.063.375.772.879.188.252.773.162.8
      YOLOv10-N6.52.3178.997.661.773.264.7167.889.453.977.452.2
      RT-DETR(r18)56.918.860.697.264.676.477.660.091.351.475.760.5
      本文方法4.20.9279.398.664.774.174.8282.791.566.277.864.9
    Tools

    Get Citation

    Copy Citation Text

    Xiaomin YANG, Jun YANG. Ultra lightweight SAR image small object detection network[J]. Optics and Precision Engineering, 2025, 33(10): 1672

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 4, 2024

    Accepted: --

    Published Online: Jul. 23, 2025

    The Author Email:

    DOI:10.37188/OPE.20253310.1672

    Topics