Journal of Optoelectronics · Laser, Volume. 35, Issue 8, 851(2024)

Yarn-dyed fabric defect detection based on U-shaped attention gate auto-encoder

ZHANG Yue*, WANG Shihao, LI Yingjian, LIU Shuaibo, and ZHANG Hongwei
Author Affiliations
  • School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • show less
    References(17)

    [1] [1] JING J F, MA H, ZHANG H W. Automatic fabric defect detection using a deep convolutional neural network[J]. Coloration Technology, 2019, 135(3): 213-223.

    [4] [4] NGAN H Y T, PANG G K H, YUNG N H C. Automated fabric defect detection—A review[J]. Image and Vision Computing, 2011, 29(7): 442-458.

    [5] [5] HU G H, WANG Q H. Fabric defect detection via undecimated wavelet decomposition and gumbel distribution model[J]. Journal of Engineered Fibers and Fabrics, 2018, 13(1): 15-32.

    [7] [7] LI M, WANG S H, DENG Z M, et al. Fabric defect detection based on saliency histogram features[J]. Computational Intelligence, 2019, 35(3): 517-534.

    [11] [11] ZHENG X Q, CHEN J, WANG H C, et al. A deep learning-based approach for the automated surface inspection of copper clad laminate images[J]. Computer Science and Business, 2021, 51(3): 1262-1279.

    [13] [13] LIU J H, WANG C Y, SU H, et al. Multistage GAN for fabric defect detection[J]. IEEE Transactions on Image Processing, 2020, 29:3380-3400.

    [14] [14] JEYARAJ P R, NADARE R S. Effective textile quality processing and an accurate inspection system using the advanced deep learning technique[J]. Textile Research Journal, 2020. 90(9-10): 971-980.

    [15] [15] JING J F, WANG Z, RATSCH M, et al. Mobile-Unet: an efficient convolutional neural network for fabric defect detection[J]. Textile Research Journal, 2020. 92(1-2): 30-42.

    [16] [16] BAO X Y, LIANG J Z, XIA Y F, et al. Low-rank decomposition fabric defect detection based on prior and total variation regularization[J]. The Visual Computer, 2022, 38(8): 2707-2721.

    [17] [17] TAO X, GONG X Y, ZHANG X, et al. Deep learning for unsupervised anomaly localization in industrial images: a survey[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71(1): 1-21.

    [18] [18] MEI S, YANG H, YIN Z P. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1266-1277.

    [19] [19] WEI W, DENG D X, ZENG L, et al. Real-time implementation of fabric defect detection based on variational automatic encoder with structure similarity[J]. Journal of Real-Time Image Processing, 2021, 18(3): 807-823.

    [23] [23] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning (ICML), June 9-14, 2019, Long Beach, Caliofornia, USA. New York: ACM, 2019: 10691-10700.

    [24] [24] SHU Z Q, LIU Z G, ZHOU J, et al. Spatial-spectral split attention residual network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations an Remote Sensing, 2023. 16(1): 419-430.

    [25] [25] HU X G, YANG H G. DRU-net: a novel U-net for biomedical image segmentation[J]. IET Image Processing, 2020. 14(1): 192-200.

    [26] [26] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 18-22, 2018, Salt Lake City, USA. Piscataway: IEEE, 2018: 4510-4520.

    [27] [27] HE K M, SUN J. Convolutional neural networks at constrained time cost[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 8-12, 2015, Boston, USA. New York: IEEE, 2015: 5353-5360.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yue, WANG Shihao, LI Yingjian, LIU Shuaibo, ZHANG Hongwei. Yarn-dyed fabric defect detection based on U-shaped attention gate auto-encoder[J]. Journal of Optoelectronics · Laser, 2024, 35(8): 851

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 19, 2023

    Accepted: Dec. 13, 2024

    Published Online: Dec. 13, 2024

    The Author Email: ZHANG Yue (zhangyue@xpu.edu.cn)

    DOI:10.16136/j.joel.2024.08.0324

    Topics