Chinese Journal of Lasers, Volume. 50, Issue 3, 0307301(2023)

Technique and Mechanism of Modulating Cellular Ca2+ Signaling Using Laser

Xiaoying Tian and Hao He*
Author Affiliations
  • School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
  • show less
    References(98)

    [1] Giorgi C, Danese A, Missiroli S et al. Calcium dynamics as a machine for decoding signals[J]. Trends in Cell Biology, 28, 258-273(2018).

    [2] Humeau J, Bravo-San Pedro J M, Vitale I et al. Calcium signaling and cell cycle: progression or death[J]. Cell Calcium, 70, 3-15(2018).

    [3] Berridge M J, Bootman M D, Lipp P. Calcium-a life and death signal[J]. Nature, 395, 645-648(1998).

    [4] Deng H S, Gerencser A A, Jasper H. Signal integration by Ca2+ regulates intestinal stem-cell activity[J]. Nature, 528, 212-217(2015).

    [5] Clapham D E. Calcium signaling[J]. Cell, 131, 1047-1058(2007).

    [6] Berridge M J, Bootman M D, Roderick H L. Calcium signalling: dynamics, homeostasis and remodelling[J]. Nature Reviews Molecular Cell Biology, 4, 517-529(2003).

    [7] Lloyd-Evans E, Waller-Evans H. Lysosomal Ca2+ homeostasis and signaling in health and disease[J]. Cold Spring Harbor Perspectives in Biology, 12, a035311(2020).

    [8] Yang J S, Zhao Z Z, Gu M X et al. Release and uptake mechanisms of vesicular Ca2+ stores[J]. Protein & Cell, 10, 8-19(2019).

    [9] Pizzo P, Lissandron V, Capitanio P et al. Ca2+ signalling in the Golgi apparatus[J]. Cell Calcium, 50, 184-192(2011).

    [10] Li L H, Tian X R, Jiang Z et al. The Golgi apparatus: panel point of cytosolic Ca2+ regulation[J]. Neuro-Signals, 21, 272-284(2013).

    [11] Ibarra C, Vicencio J M, Varas-Godoy M et al. An integrated mechanism of cardiomyocyte nuclear Ca2 + signaling[J]. Journal of Molecular and Cellular Cardiology, 75, 40-48(2014).

    [12] Alonso M T, Garcia-Sancho J. Nuclear Ca2+ signalling[J]. Cell Calcium, 49, 280-289(2011).

    [13] Secondo A, Petrozziello T, Tedeschi V et al. Nuclear localization of NCX: role in Ca2+ handling and pathophysiological implications[J]. Cell Calcium, 86, 102143(2020).

    [14] Bootman M D, Fearnley C, Smyrnias I et al. An update on nuclear calcium signalling[J]. Journal of Cell Science, 122, 2337-2350(2009).

    [15] Jeziorek M, Dobrowolski R. RyR-ing up nuclear calcium signaling and CREB-mediated gene expression[J]. Cell Calcium, 100, 102482(2021).

    [16] Malviya A N, Klein C. Mechanism regulating nuclear calcium signaling[J]. Canadian Journal of Physiology and Pharmacology, 84, 403-422(2006).

    [17] Marius P, Guerra M T, Nathanson M H et al. Calcium release from ryanodine receptors in the nucleoplasmic reticulum[J]. Cell Calcium, 39, 65-73(2006).

    [18] Rodrigues M A, Gomes D A, Leite M F et al. Nucleoplasmic calcium is required for cell proliferation[J]. Journal of Biological Chemistry, 282, 17061-17068(2007).

    [19] Rodrigues M A, Gomes D A, Nathanson M H et al. Nuclear calcium signaling: a cell within a cell[J]. Brazilian Journal of Medical and Biological Research, 42, 17-20(2009).

    [20] Wente S R, Rout M P. The nuclear pore complex and nuclear transport[J]. Cold Spring Harbor Perspectives in Biology, 2, a000562(2010).

    [21] Queisser G, Wiegert S, Bading H. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription[J]. Nucleus, 2, 98-104(2011).

    [22] Ibarra C, Vicencio J M, Estrada M et al. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors[J]. Circulation Research, 112, 236-245(2013).

    [23] Simonetti M, Hagenston A M, Vardeh D et al. Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain[J]. Neuron, 77, 43-57(2013).

    [24] Li B X, Jie W, Huang L Y et al. Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling[J]. Nature Neuroscience, 17, 1055-1063(2014).

    [25] Ljubojevic S, Radulovic S, Leitinger G et al. Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure[J]. Circulation, 130, 244-255(2014).

    [26] Martins T V, Evans M J, Wysham D B et al. Nuclear pores enable sustained perinuclear calcium oscillations[J]. BMC Systems Biology, 10, 55(2016).

    [27] Monaco S, Jahraus B, Samstag Y et al. Nuclear calcium is required for human T cell activation[J]. The Journal of Cell Biology, 215, 231-243(2016).

    [28] Plačkić J, Preissl S, Nikonova Y et al. Enhanced nucleoplasmic Ca2+ signaling in ventricular myocytes from young hypertensive rats[J]. Journal of Molecular and Cellular Cardiology, 101, 58-68(2016).

    [29] Li S, Keung W, Cheng H P et al. Structural and mechanistic bases of nuclear calcium signaling in human pluripotent stem cell-derived ventricular cardiomyocytes[J]. Stem Cells International, 2019, 8765752(2019).

    [30] Wu H X, Carvalho P, Voeltz G K. Here, there, and everywhere: the importance of ER membrane contact sites[J]. Science, 361, eaan5835(2018).

    [31] Phillips M J, Voeltz G K. Structure and function of ER membrane contact sites with other organelles[J]. Nature Reviews Molecular Cell Biology, 17, 69-82(2016).

    [32] Csordás G, Weaver D, Hajnoczky G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions[J]. Trends in Cell Biology, 28, 523-540(2018).

    [33] Ivanova H, Kerkhofs M, La Rovere R M et al. Endoplasmic reticulum-mitochondrial Ca2+ fluxes underlying cancer cell survival[J]. Frontiers in Oncology, 7, 70(2017).

    [34] Berridge M J. The inositol trisphosphate/calcium signaling pathway in health and disease[J]. Physiological Reviews, 96, 1261-1296(2016).

    [35] Saleem H, Tovey S C, Molinski T F et al. Interactions of antagonists with subtypes of inositol 1, 4, 5‐trisphosphate (IP3) receptor[J]. British Journal of Pharmacology, 171, 3298-3312(2014).

    [36] Tiffert T, Lew V L. Kinetics of inhibition of the plasma membrane calcium pump by vanadate in intact human red cells[J]. Cell Calcium, 30, 337-342(2001).

    [37] Kraft R. The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels[J]. Biochemical and Biophysical Research Communications, 361, 230-236(2007).

    [38] Hassan M T, Lytton J. Potassium-dependent sodium-calcium exchanger (NCKX) isoforms and neuronal function[J]. Cell Calcium, 86, 102135(2020).

    [39] Gomez-Villafuertes R, Mellström B, Naranjo J R. Searching for a role of NCX/NCKX exchangers in neurodegeneration[J]. Molecular Neurobiology, 35, 195-202(2007).

    [40] Kim H K, Lee G H, Bhattarai K R et al. TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy through regulation of lysosomal calcium[J]. Autophagy, 17, 761-778(2021).

    [41] Missiaen L, Callewaert G, De Smedt H et al. 2-Aminoethoxydiphenyl borate affects the inositol 1, 4, 5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells[J]. Cell Calcium, 29, 111-116(2001).

    [42] DeHaven W I, Jr, Smyth J T, Boyles R R et al. Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry[J]. Journal of Biological Chemistry, 283, 19265-19273(2008).

    [43] Paillard M, Csordás G, Huang K T et al. MICU1 interacts with the D-ring of the MCU pore to control its Ca2+ flux and sensitivity to Ru360[J]. Molecular Cell, 72, 778-785(2018).

    [44] Ma J. Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle[J]. The Journal of General Physiology, 102, 1031-1056(1993).

    [45] Secondo A, Esposito A, Petrozziello T et al. Na+/Ca2+ exchanger 1 on nuclear envelope controls PTEN/Akt pathway via nucleoplasmic Ca2+ regulation during neuronal differentiation[J]. Cell Death Discovery, 4, 12(2018).

    [46] Momotake A, Lindegger N, Niggli E et al. The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in living cells[J]. Nature Methods, 3, 35-40(2006).

    [47] Ellis-Davies G C R. Caged compounds: photorelease technology for control of cellular chemistry and physiology[J]. Nature Methods, 4, 619-628(2007).

    [48] Li B H, Chen T L, Lin L et al. Recent progress in photodynamic therapy: from fundamental research to clinical applications[J]. Chinese Journal of Lasers, 49, 0507101(2022).

    [49] Wang S W, Lei M. Recent advances in two-photon excited photodynamic therapy[J]. Chinese Journal of Lasers, 49, 1507101(2022).

    [50] Lei M, Pang W, Shi B et al. Two-photon photodynamic therapy using nucleolus-targeted carbon dots[J]. Chinese Journal of Lasers, 49, 1507104(2022).

    [51] Lohmann C, Myhr K L, Wong R O L. Transmitter-evoked local calcium release stabilizes developing dendrites[J]. Nature, 418, 177-181(2002).

    [52] Ashby M C, Craske M, Park M K et al. Localized Ca2+ uncaging reveals polarized distribution of Ca2+-sensitive Ca2+ release sites: mechanism of unidirectional Ca2+ waves[J]. The Journal of Cell Biology, 158, 283-292(2002).

    [53] Fukaya R, Maglione M, Sigrist S J et al. Rapid Ca2+ channel accumulation contributes to cAMP-mediated increase in transmission at hippocampal mossy fiber synapses[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, 2016754118(2021).

    [54] Allbritton N L, Oancea E, Kuhn M A et al. Source of nuclear calcium signals[J]. Proceedings of the National Academy of Sciences of the United States of America, 91, 12458-12462(1994).

    [55] Jaconi M, Pyle J, Bortolon R et al. Calcium release and influx colocalize to the endoplasmic reticulum[J]. Current Biology, 7, 599-602(1997).

    [56] Callaway E M, Yuste R. Stimulating neurons with light[J]. Current Opinion in Neurobiology, 12, 587-592(2002).

    [57] Ucar H, Watanabe S, Noguchi J et al. Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis[J]. Nature, 600, 686-689(2021).

    [58] Marvin J S, Borghuis B G, Tian L et al. An optimized fluorescent probe for visualizing glutamate neurotransmission[J]. Nature Methods, 10, 162-170(2013).

    [59] Ellis-Davies G C R. Two-photon uncaging of glutamate[J]. Frontiers in Synaptic Neuroscience, 10, 48(2018).

    [60] Ngo-Anh T J, Bloodgood B L, Lin M et al. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines[J]. Nature Neuroscience, 8, 642-649(2005).

    [61] Lee S J R, Escobedo-Lozoya Y, Szatmari E M et al. Activation of CaMKII in single dendritic spines during long-term potentiation[J]. Nature, 458, 299-304(2009).

    [62] Benninger R K P, Piston D W. Two-photon excitation microscopy for the study of living cells and tissues[J]. Current Protocols in Cell Biology, 4, 1-36(2013).

    [63] Rost B R, Schneider-Warme F, Schmitz D et al. Optogenetic tools for subcellular applications in neuroscience[J]. Neuron, 96, 572-603(2017).

    [64] Baratta M, Nakamura S, Dobelis P et al. Optogenetic control of genetically-targeted pyramidal neuron activity in prefrontal cortex[J]. Nature Precedings, 1-2(2012).

    [65] Boyden E S. Optogenetics and the future of neuroscience[J]. Nature Neuroscience, 18, 1200-1201(2015).

    [66] Repina N A, Rosenbloom A, Mukherjee A et al. At light speed: advances in optogenetic systems for regulating cell signaling and behavior[J]. Annual Review of Chemical and Biomolecular Engineering, 8, 13-39(2017).

    [67] Mardinly A R, Oldenburg I A, Pégard N C et al. Precise multimodal optical control of neural ensemble activity[J]. Nature Neuroscience, 21, 881-893(2018).

    [68] Nguyen N T, Ma G L, Zhou Y B et al. Optogenetic approaches to control Ca2+-modulated physiological processes[J]. Current Opinion in Physiology, 17, 187-196(2020).

    [69] Prakriya M, Lewis R S. Store-operated calcium channels[J]. Physiological Reviews, 95, 1383-1436(2015).

    [70] Kyung T, Lee S, Kim J E et al. Optogenetic control of endogenous Ca2+ channels in vivo[J]. Nature Biotechnology, 33, 1092-1096(2015).

    [71] He L, Zhang Y W, Ma G L et al. Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation[J]. eLife, 4, e10024(2015).

    [72] Ma G L, Liu J D, Ke Y P et al. Optogenetic control of voltage-gated calcium channels[J]. Angewandte Chemie (International Ed. in English), 57, 7019-7022(2018).

    [73] Airan R D, Thompson K R, Fenno L E et al. Temporally precise in vivo control of intracellular signalling[J]. Nature, 458, 1025-1029(2009).

    [74] Hannanta-Anan P, Chow B Y. Optogenetic inhibition of Gαq protein signaling reduces calcium oscillation stochasticity[J]. ACS Synthetic Biology, 7, 1488-1495(2018).

    [75] Asano T, Igarashi H, Ishizuka T et al. Organelle optogenetics: direct manipulation of intracellular Ca2+ dynamics by light[J]. Frontiers in Neuroscience, 12, 561(2018).

    [76] Rickgauer J P, Tank D W. Two-photon excitation of channelrhodopsin-2 at saturation[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 15025-15030(2009).

    [77] Packer A M, Russell L E, Dalgleish H W P et al. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo[J]. Nature Methods, 12, 140-146(2015).

    [78] Prakash R, Yizhar O, Grewe B et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation[J]. Nature Methods, 9, 1171-1179(2012).

    [79] Xu C Y, Tan S C, Xing D. Effect of He-Ne laser irradiation on[Ca2+]i and immunocompetence in macrophages[J]. Chinese Journal of Lasers, 31, 253-256(2004).

    [80] Compton J L, Luo J C, Ma H et al. High-throughput optical screening of cellular mechanotransduction[J]. Nature Photonics, 8, 710-715(2014).

    [81] Shannon E K, Stevens A, Edrington W et al. Multiple mechanisms drive calcium signal dynamics around laser-induced epithelial wounds[J]. Biophysical Journal, 113, 1623-1635(2017).

    [82] Basak R, Sutradhar S, Howard J. Focal laser stimulation of fly nociceptors activates distinct axonal and dendritic Ca2+ signals[J]. Biophysical Journal, 120, 3222-3233(2021).

    [83] Shapiro M G, Homma K, Villarreal S et al. Infrared light excites cells by changing their electrical capacitance[J]. Nature Communications, 3, 736(2012).

    [84] Zhang J X, He Y, Liang S S et al. Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning[J]. Nature Communications, 12, 2730(2021).

    [85] Ermakova Y G, Lanin A A, Fedotov I V et al. Thermogenetic neurostimulation with single-cell resolution[J]. Nature Communications, 8, 15362(2017).

    [86] Baumgart J, Bintig W, Ngezahayo A et al. Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection[J]. Optics Express, 18, 2219-2229(2010).

    [87] Zhao X T, Shi Y, Pan T et al. In situ single-cell surgery and intracellular organelle manipulation via thermoplasmonics combined optical trapping[J]. Nano Letters, 22, 402-410(2022).

    [88] Smith N I, Fujita K, Kaneko T et al. Generation of calcium waves in living cells by pulsed-laser-induced photodisruption[J]. Applied Physics Letters, 79, 1208-1210(2001).

    [89] Iwanaga S, Smith N, Fujita K et al. Single-pulse cell stimulation with a near-infrared picosecond laser[J]. Applied Physics Letters, 87, 243901(2005).

    [90] Iwanaga S, Kaneko T, Fujita K et al. Location-dependent photogeneration of calcium waves in HeLa cells[J]. Cell Biochemistry and Biophysics, 45, 167-176(2006).

    [91] Liu X L, Lv X H, Zeng S Q et al. Noncontact and nondestructive identification of neural circuits with a femtosecond laser[J]. Applied Physics Letters, 94, 061113(2009).

    [92] He H, Wang S Y, Li X et al. Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure[J]. Applied Physics Letters, 100, 173704(2012).

    [93] He H, Li S Y, Wang S Y et al. Manipulation of cellular light from green fluorescent protein by a femtosecond laser[J]. Nature Photonics, 6, 651-656(2012).

    [94] Wang Y S, He H, Wang Q Y. Calcium signal modulation of human cells by femtosecond laser[J]. Laser & Optoelectronics Progress, 50, 115-126(2013).

    [95] He H, Kong S K, Chan K T. Identification of source of calcium in HeLa cells by femtosecond laser excitation[J]. Journal of Biomedical Optics, 15, 057010(2010).

    [96] Shi F, Wang S Y, Zhu Y J et al. Excitation of mitochondria-endoplasmic reticulum Ca2+ coupling by femtosecond-laser photostimulation[J]. IEEE Photonics Journal, 12, 3700308(2020).

    [97] Yu Z Y, Wang H P, Tang W Y et al. Mitochondrial Ca2+ oscillation induces mitophagy initiation through the PINK1-Parkin pathway[J]. Cell Death & Disease, 12, 632(2021).

    [98] Cheng P, Tian X Y, Tang W Y et al. Direct control of store-operated calcium channels by ultrafast laser[J]. Cell Research, 31, 758-772(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoying Tian, Hao He. Technique and Mechanism of Modulating Cellular Ca2+ Signaling Using Laser[J]. Chinese Journal of Lasers, 2023, 50(3): 0307301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Neurophotonics and Optical Regulation

    Received: Oct. 28, 2022

    Accepted: Dec. 14, 2022

    Published Online: Feb. 6, 2023

    The Author Email: He Hao (haohe@sjtu.edu.cn)

    DOI:10.3788/CJL221371

    Topics