Journal of Infrared and Millimeter Waves, Volume. 41, Issue 6, 1030(2022)
Design of high-frequency circuit for W-band CW sheet beam extended-interaction klystron
Fig. 2. Transverse electric field distribution of multi-gap cavity (a) TM11 mode, (b) TM31 mode
Fig. 3. Axial electric field distribution of five-gap cavity (a) TM31-2π mode, (b) TM31-1/4π mode, (c) TM31-2/4π mode, (d) TM31-3/4π mode, (e) TM31-π mode
Fig. 4. Five-gap cavity of TM11 mode (a) A 3D model of five-gap cavity, (b) transverse electric field distribution
Fig. 5. Influence of the fabrication tolerance of structure parameters on frequency (a) TM31 mode, (b) TM11 mode
Fig. 6. Influence of the fabrication tolerance of structure parameters on R/Q (a) TM31 mode, (b) TM11 mode
Fig. 7. Axial electric field distribution of output cavity (a) initial output cavity, (b) improved output cavity
Fig. 8. Electric field distribution of the initial and improved output cavity (a) axial electric field distribution, (b) transverse electric field distribution
Fig. 11. Output characteristics of the EIK at a frequency of 95 GHz (a) output signal versus time, (b) frequency spectrum of the output signal, (c) phase space portrait of the particle energy distribution, (d) beam bunching sketch
Fig. 12. Transmission characteristics of the sheet beam (a) The beginning of the high frequency system, (b) The end of the high frequency system
|
|
Get Citation
Copy Citation Text
Qi JIN, Zhi-Hui GENG, Jian ZHANG, Rui ZHANG, Xiu-Dong YANG, Yun-Feng LIAO, Shou-Xi XU. Design of high-frequency circuit for W-band CW sheet beam extended-interaction klystron[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1030
Category: Research Articles
Received: Apr. 22, 2022
Accepted: --
Published Online: Feb. 6, 2023
The Author Email: Zhi-Hui GENG (zh.geng@163.com)