Chinese Journal of Lasers, Volume. 52, Issue 3, 0307103(2025)

Preoperative and Intraoperative Cross‐Source Point Cloud Registration Based on Attention Mechanism Enhancement

Tianbao Liu1,2,3, Jiahui Guo1,2,3, Yibin Song1,2,3, Wei Wang4, Bo Wu1,2,3、*, and Nan Zhang1,2,3
Author Affiliations
  • 1School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
  • 2Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
  • 3Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
  • 4Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
  • show less
    Figures & Tables(11)
    Registration method for farthest point sampling cross-source point cloud based on attention mechanism
    Pre-operative local-intra-operative point cloud registration diagram based on attention mechanism
    Feature aggregation module
    Preoperative FPS point cloud in local regions and the preoperative and intraoperative point cloud pairs. (a) Preoperative point cloud in local regions; (b) preoperative and intraoperative point cloud pairs
    Registration results of 001-L2, 002-L3, 003-L1, 004-L1, 005-L3, 006-L1, and 007-L1
    Intraoperative point clouds with different levels of Gaussian noise. (a) No noise added; (b)adding noise with a standard deviation of 0.25; (c) adding noise with a standard deviation of 0.50
    • Table 1. Test data sources and initial attitudes

      View table

      Table 1. Test data sources and initial attitudes

      Exposed siteSourceRotation /(°)Translation /mm
      XYZXYZ
      001-L2148.5348.47138.47114.08-64.99-103.52
      002-L3109.4828.1979.30-55.677.2340.84
      003-L1-76.5968.13-88.32-98.28-59.3626.07
      004-L1104.6770.8697.17398.1034.1419.08
      005-L396.7042.0692.16216.39-44.5276.20
      006-L196.9422.4182.55-89.1145.3442.65
      007-L189.3958.1582.35-57.78-42.7338.71
    • Table 2. Preoperative‒intraoperative point cloud registration error and running time

      View table

      Table 2. Preoperative‒intraoperative point cloud registration error and running time

      Exposed siteRegistration algorithmRe /(°)Te /mmTime /s
      001-L2FPS+FPFH1714.819.3165.61
      FPS+FastReg236.177.6222.58
      FPS+ours4.523.5118.57
      002-L3FPS+FPFH178.124.84166.35
      FPS+FastReg235.526.7423.41
      FPS+ours3.583.9019.24
      003-L1FPS+FPFH178.524.88207.69
      FPS+FastReg233.345.1023.98
      FPS+ours2.583.2019.53
      004-L1FPS+FPFH177.7517.8152.87
      FPS+FastReg233.143.2022.85
      FPS+Ours2.882.9517.61
      005-L3FPS+FPFH173.4310.2566.98
      FPS+FastReg234.334.9422.14
      FPS+ours1.792.6219.29
      006-L1FPS+FPFH174.287.68164.09
      FPS+FastReg235.447.7821.22
      FPS+ours2.514.1917.77
      007-L1FPS+FPFH171.753.5044.66
      FPS+FastReg232.713.3622.71
      FPS+ours2.292.0917.43
    • Table 3. Maximum, median, mean of matched feature pairs and the number of key points after encoding

      View table

      Table 3. Maximum, median, mean of matched feature pairs and the number of key points after encoding

      Exposed siteRegistration algorithmMedianMeanMaxKey points after encoding
      001-L2FPS+FPFH1726630000
      FPS+FastReg235064119512
      FPS+ours2027343512
      002-L3FPS+FPFH1711130000
      FPS+FastReg234746128512
      FPS+ours2322114512
      003-L1FPS+FPFH1758530000
      FPS+FastReg235057128512
      FPS+ours2937186512
      004-L1FPS+FPFH1742830000
      FPS+FastReg234559162512
      FPS+Ours28/43180512
      005-L3FPS+FPFH17102630000
      FPS+FastReg23313884512
      FPS+ours3445116512
      006-L1FPS+FPFH1731530000
      FPS+FastReg234856141512
      FPS+ours2945176512
      007-L1FPS+FPFH17112130000
      FPS+FastReg234756182512
      FPS+ours3548305512
    • Table 4. Ablation experiment

      View table

      Table 4. Ablation experiment

      NetworkR¯e /(°)T¯e /mm
      Initial2.873.22
      Removal of cross-attention mechanism4.816.62
      Removal of all attention mechanism6.5210.57
    • Table 5. Noise experimental results

      View table

      Table 5. Noise experimental results

      Noise standard deviation magnitudeR¯e /(°)T¯e /mm
      δ=02.873.22
      δ=0.257.486.18
      δ=0.509.557.11
    Tools

    Get Citation

    Copy Citation Text

    Tianbao Liu, Jiahui Guo, Yibin Song, Wei Wang, Bo Wu, Nan Zhang. Preoperative and Intraoperative Cross‐Source Point Cloud Registration Based on Attention Mechanism Enhancement[J]. Chinese Journal of Lasers, 2025, 52(3): 0307103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Sep. 11, 2024

    Accepted: Oct. 29, 2024

    Published Online: Jan. 13, 2025

    The Author Email: Wu Bo (wubogo@ccmu.edu.cn)

    DOI:10.3788/CJL241199

    CSTR:32183.14.CJL241199

    Topics